

# Cycloenantiomere (Ligand)Übergangsmetall- $\pi$ -Komplexe organosubstituierter 2,5-Dihydro-1,2,5-azasilaborol-Verbindungen – Charakterisierung im festen Zustand<sup>1)</sup>

Roland Köster \* <sup>a</sup>, Günter Seidel<sup>a</sup>, Carl Krüger \* <sup>a</sup>, Gerhard Müller <sup>2a) a</sup>, Anbei Jiang <sup>2b) a</sup> und Roland Boese \* <sup>b</sup>

Max-Planck-Institut für Kohlenforschung<sup>a</sup>, Kaiser-Wilhelm-Platz 1, D-4330 Mülheim an der Ruhr Institut für Anorganische Chemie der Universität Essen<sup>b</sup>, Universitätsstraße 5-7, D-4300 Essen

Eingegangen am 24. April 1989

Key Words: Transition metal n<sup>4</sup>-organoboranes / Cycloenantiotopy / Cyclodiastereomers / cycloRS molecules

Sechs n-Komplexe der Heterocyclen  $\mathbb{R}^1 \overline{NSi(CH_3)} \mathbb{R}^2 C(\mathbb{R}^3) = \overline{C(C_2H_5)} \mathbb{B}C_2H_5 [4a: \mathbb{R}^1 \mathbb{R}^2 \mathbb{R}^3 = CH_3; 5a: \mathbb{R}^1 = C_6H_5, \mathbb{R}^2 \mathbb{R}^3 = CH_3;$ 7d:  $\mathbb{R}^1 = H$ ,  $\mathbb{R}^2 = C_6H_5$ ,  $\mathbb{R}^3 = CH_3$ ; 3a:  $\mathbb{R}^1 = yl$ ,  $\mathbb{R}^2 \mathbb{R}^3 = CH_3$ ; 4b:  $\mathbb{R}^1 \mathbb{R}^2 = CH_3$ ,  $\mathbb{R}^3 = C(CH_3) = CH_2$ ] mit den (Ligand)-Übergangsmetail-Fragmenten (OC)<sub>3</sub>Cr,  $C_5H_5Co$ ,  $C_2H_4(Cl)Ir$ ,  $C_2H_4\mathbb{R}h$  und Ni werden durch Kristallstrukturanalysen charakterisiert: (OC)<sub>3</sub>Cr- $\eta^6$ -5a (2 Rotamere) sowie die  $\eta^4$ -cycloRS-Enantiomeren cycloS-C<sub>5</sub>H<sub>5</sub>Co- $\eta^4$ -5a- $\eta^6$ -Cr(CO)<sub>5</sub>; cycloS-C<sub>5</sub>H<sub>5</sub>Co- $\eta^4$ -7d; cycloR-C<sub>2</sub>H<sub>4</sub>(Cl)Ir- $\eta^4$ -4a, meso-(C<sub>2</sub>H<sub>4</sub>\mathbb{R}h- $\eta^1\eta^4$ -3a)<sub>2</sub> und meso-(Ni- $\eta^3\eta^4$ -4bb/)<sub>2</sub>.

## Cycloenantiomeric (Ligand) Transition Metal $\pi$ -Complexes of Organosubstituted 2,5-Dibydro-1,2,5-azasilaborole Compounds – Characterization in the Solid State<sup>1)</sup>

Six  $\pi$ -complexes of the heterocycles  $\mathbb{R}^1 \overline{NSI(CH_3)} \mathbb{R}^2 \mathbb{C}(\mathbb{R}^3) = \mathbb{C}(\mathbb{C}_2\mathbb{H}_5)\mathbb{B}\mathbb{C}_2\mathbb{H}_5$  [4a:  $\mathbb{R}^1\mathbb{R}^2\mathbb{R}^3 = \mathbb{C}\mathbb{H}_3$ ; 5a:  $\mathbb{R}^1 = \mathbb{C}_6\mathbb{H}_5$ ,  $\mathbb{R}^2\mathbb{R}^3 = \mathbb{C}\mathbb{H}_3$ ; 7d:  $\mathbb{R}^1 = \mathbb{H}$ ,  $\mathbb{R}^2 = \mathbb{C}_6\mathbb{H}_5$ ,  $\mathbb{R}^3 = \mathbb{C}\mathbb{H}_3$ ; 3a:  $\mathbb{R}^1 = \mathbb{I}$ ,  $\mathbb{R}^2\mathbb{R}^3 = \mathbb{C}\mathbb{H}_3$ ; 4b:  $\mathbb{R}^1\mathbb{R}^2 = \mathbb{C}\mathbb{H}_3$ ,  $\mathbb{R}^3 = \mathbb{C}(\mathbb{C}\mathbb{H}_3) = \mathbb{C}\mathbb{H}_2$ ] with the (ligand)transition metal fragments (OC)\_3Cr. C\_3\mathbb{H}\_5Co, C\_2\mathbb{H}\_4(\mathbb{C})\mathbb{I}r, C\_2 $\mathbb{H}_4\mathbb{R}h$  and Ni are characterized by X-ray structure analyses: (OC)\_3Cr- $\eta^6$ -5a (2 rotamers) and the  $\eta^4$ -cycloRS-enantiomers cycloS-C\_5\mathbb{H}\_5Co- $\eta^4$ -5a- $\eta^6$ -Cr(CO)<sub>3</sub>; cycloS-C\_3\mathbb{H}\_5Co- $\eta^4$ -7d; cycloR-C\_2\mathbb{H}\_4(\mathbb{C})\mathbb{I}r- $\eta^4$ -4a, meso-(C<sub>2</sub> $\mathbb{H}_4\mathbb{R}h-\eta^1\eta^4$ -3a)<sub>2</sub> and meso-(Ni- $\eta^3\eta^4$ -4bb/<sub>2</sub>.

In vorangegangenen Arbeiten<sup>1,3-7)</sup> und Übersichten<sup>8,9)</sup> haben wir über Herstellungsmethoden von (Ligand)Übergangsmetall- $\pi$ -Komplexen der  $\eta^4$ -gebundenen Heterocyclen I berichtet.



Die einfach ungesättigten Fünfringe wie Verbindungen vom Typ 3 mit El = Stickstoff-Atom oder vom Typ 4, 5 und 7 mit El = Atomgruppierung NR sind aus (E)-1-(Diorganoboryl)-2-(triorganosilyl)ethenen (E)-1 mit Natriumoder Kaliumamid über die Alkalimetall-Verbindungen vom Typ 2 und 3 leicht zugänglich<sup>1,4,10,11</sup>. Die cycloenantiotopen und, falls  $R^2 \neq R^2$ , cyclodiastereotopen Heterocyclen können bei  $\eta^4$ -Verknüpfung an das Koordinationszentrum eines Übergangsmetalls zwei cycloenantiomere<sup>12,13</sup> bzw. zwei oder vier cyclodiastereomere<sup>12,13</sup>  $\pi$ -Komplex-Verbindungen bilden. Daher haben wir die Strukturen einiger ausgewählter (Ligand)Übergangsmetall- $\pi$ -Komplexe organosubstituierter 2,5-Dihydro-1,2,5-azasilaborole nicht nur NMR-spektroskopisch in Lösung<sup>1</sup>, sondern auch im festen Zustand mit Hilfe der Röntgenstrahlbeugung untersucht. Die Ergebnisse der Strukturuntersuchungen von fünf (Ligand)Übergangsmetall- $\eta^4$ -[2,5-dihydro-(1,)2,2,3,4,5-(hexa)pentaorgano-1*H*-1,2,5-azasilaborol]-Komplexen und von der Verbindung (OC)<sub>3</sub>Cr- $\eta^6$ -**5a** werden hier mitgeteilt.



Bisher ist über Kristallstrukturanalysen organosubstituierter 2,5-Dihydro-1,2,5-azasilaborol- $\eta^4$ -Komplexe mit Ausnahme einer einzigen Verbindung<sup>3)</sup> nicht berichtet worden im Gegensatz zu ElSiC<sub>2</sub>B- $\eta^4$ -Komplexen mit El = Schwefel<sup>5)</sup>, Selen<sup>6)</sup> und Phosphor<sup>7)</sup> sowie von zwei  $\eta^1$ -Komplexen des  $\sigma$ -gebundenen 2,5-Dihydro-pentaorgano-1,2,5-azasilaborolyls  $[M - (\eta^1 - 3a)_2]_2$  mit M = Eisen<sup>10)</sup> und Cobalt<sup>14)</sup>.

## Kristallstrukturanalysen

Die Strukturen der im Kristall vorliegenden Einzelmoleküle sind in den Abbildungen 1–6 dargestellt. Die R<sub>2</sub>Si-Gruppierung des NSiC<sub>2</sub>B-Fünfrings steht in sämtlichen Abbildungen im Vordergrund, wodurch z. B. die Unterschiede der Rotameren A und B der Verbindung (OC)<sub>3</sub>Cr- $\eta^6$ -**5a** verdeutlicht werden sowie geometrische Abweichungen au-Berhalb der 2,5-Dihydro-organo-1,2,5-azasilaborol-Ringe sich gut erkennen lassen.

Tab. 1 faßt die charakteristischen Atomabstände der sechs  $\pi$ -Komplexe zusammen, Tab. 2 gibt einen Überblick über ausgewählte Winkel. In Tab. 3 sind einige Interplanarwinkel zusammengestellt.

Die Geometrie des nicht  $\pi$ -komplexierten NSiC<sub>2</sub>B-Ringes in (OC)<sub>3</sub>Cr- $\eta^6$ -**5a** (Abb. 1) entspricht innerhalb der Standardabweichungen für Abstände und Winkel der Geometrie der NSiC<sub>2</sub>B-Ringe in der Eisen-Verbindung [Fe-( $\eta^1$ -**3a**)<sub>2</sub>]<sub>2</sub><sup>10</sup>) bzw. in der isostrukturellen Cobalt-Verbindung [Co-( $\eta^1$ -**3a**)<sub>2</sub>]<sub>2</sub><sup>14</sup>. Der NSiC<sub>2</sub>B-Heterocyclus liegt auch in (OC)<sub>3</sub>Cr- $\eta^6$ -**5a** mit Abweichungen von nur  $\pm 0.04$  bzw.  $\pm 0.008$  Å annähernd planar vor. Die zwei unabhängigen Moleküle in der asymmetrischen Einheit der Elementarzelle unterscheiden sich nur in der Einstellung des Phenylringes mit  $(OC)_3Cr-\eta^6$ -Fragment relativ zum cycloenantiotopen Fünfring. Die beiden Interplanarwinkel N1B1C20C21/C14-C19 und N2B2C40C41/C34-C39 betragen 32 bzw. 66°. Die vom ebenfalls einfach ungesättigten NSnC<sub>2</sub>B-Ringsystem her bekannte und zur Atropisomerie führende, gehinderte Rotation um die N-C<sup>1</sup>-Bindung<sup>15)</sup> trägt vermutlich beim  $(OC)_3$ -Cr- $\eta^6$ -**5a**-Molekül zur Bildung der beiden Rotameren A und B im Kristall bei.

Die Bindungsabstände im mit 1,3-Alkadienen isoelektronischen 4 $\pi$ -Ringsystem der Verbindungen C<sub>5</sub>H<sub>5</sub>Co- $\eta^4$ -7**d** (Abb. 2), C<sub>5</sub>H<sub>5</sub>-Co- $\eta^4$ -5**a**- $\eta^6$ -Cr(CO)<sub>3</sub> (Abb. 3), C<sub>2</sub>H<sub>4</sub>(Cl)Ir- $\eta^4$ -4**a** (Abb. 4), (C<sub>2</sub>H<sub>4</sub>Rh- $\eta^1\eta^4$ -3**a**)<sub>2</sub> (Abb. 5) und (Ni- $\eta^3\eta^4$ -4**bb**')<sub>2</sub> (Abb. 6) sind wegen der  $\pi$ -Komplexierung im Vergleich zu denen der freien Liganden typisch verändert (vgl. Tab. 1).

Beispielsweise wird die  $C^3 = C^4$ -Bindung in den  $\eta^4$ -Komplexen gegenüber dem freien  $NSiC_2B$ -Liganden (vgl. Abb. 1) um 0.08 - 0.14 Å, die B - N-Bindung um 0.03 - 0.10 Å aufgeweitet. Die  $B - C^4$ -Bindungen sind dagegen um 0.01 bis 0.06 Å verkürzt. Die Bindungsabstände des  $\eta^4$ -komplexierten Ringes zu den Metallen lassen sich nicht ohne weiteres

| Tab. 1. | Charakteristische | Atomabstände der | (Ligand)Übergangsmeta | all- $\pi$ -NSiC <sub>2</sub> B-Komplexe |
|---------|-------------------|------------------|-----------------------|------------------------------------------|
|---------|-------------------|------------------|-----------------------|------------------------------------------|

| Atom-                                  | Atomabstände in Å                       |                                              |                                                      |                          |                                      |                                                       |  |
|----------------------------------------|-----------------------------------------|----------------------------------------------|------------------------------------------------------|--------------------------|--------------------------------------|-------------------------------------------------------|--|
| gruppierung <sup>a)</sup>              | (CO)3Cr-116-5a                          | С <sub>5</sub> Н <sub>5</sub> Со <b>η⁴7d</b> | C <sub>s</sub> H <sub>s</sub> Co-η <sup>4</sup> -5a- | $C_2H_4(Cl)Ir-\eta^4-4a$ | (C2H4Rh-                             | (Ni-η <sup>3</sup> η <sup>4</sup> -4bb') <sub>2</sub> |  |
|                                        | (2 Mol A, B)                            |                                              | η <sup>6</sup> Cr(CO) <sub>3</sub>                   | (2 Mol A, B)             | $\eta^{1}\eta^{4}$ -3a) <sub>2</sub> |                                                       |  |
| N-Si                                   | A 1.780(3)<br>B 1.768(3)                | 1.761(4)                                     | 1.794(4)<br>_                                        | A 1.798(4)<br>B 1.795(4) | 1.757(3)                             | 1.761(3) 1.769(3)                                     |  |
| si-C <sup>3</sup>                      | A 1.857(3)<br>B 1.852(4)                | 1.842(4)                                     | 1.848(5)                                             | A 1.857(5)<br>B 1.857(6) | 1.880(4)                             | 1.877(3) 1.871(4)                                     |  |
| c <sup>3</sup> -c <sup>4</sup>         | A 1.337(4)<br>B 1.323(7)                | 1. <b>426(6)</b><br>—                        | 1.417(7)                                             | A 1.415(7)<br>B 1.412(7) | 1.407(6)                             | 1.465(5) 1.472(5)<br>—                                |  |
| C <sup>4</sup> -B                      | A 1.586(5)<br>B 1.580(7)                | 1.525(7)                                     | 1.527(7)                                             | A 1.575(8)<br>B 1.537(8) | 1.570(7)                             | 1.539(6) 1.553(6)                                     |  |
| B-N                                    | A 1.447(4)<br>B 1.427(6)                | 1.486(7)                                     | 1.533(6)                                             | A 1.486(8)<br>B 1.487(8) | 1.475(6)                             | 1.468(5) 1.462(5)                                     |  |
| SiSP(NC <sup>3</sup> C <sup>4</sup> B) | A 1.879(1)<br>B 1.859(1)                | 1.905                                        | 1.922(1)                                             | A 1.919(1)<br>B 1.915(2) | 1.855(1)                             | 1.869(1) 1.865(1)                                     |  |
| $M \cdots SP(NC^{3}C^{4}B)$            | -                                       | 1.623                                        | 1.637(1)                                             | A 1.797(1)<br>B 1.809(1) | 1.803(1)                             | 1.734(1) 1.737(1)                                     |  |
| M-N                                    | -                                       | 2.013(4)                                     | 2.063(3)                                             | A 2.153(4)<br>B 2.149(4) | 2.138(3)<br>2.103(3)                 | 2.107(3) 2.120(3)                                     |  |
| M…Si                                   | _                                       | 2.651(1)                                     | 2.692(1)                                             | A 2.800(1)<br>B 2.774(1) | 2.776(1);<br>3.494(1)                | 2.838(1) 2.852(1)                                     |  |
| м-с <sup>3</sup>                       | _                                       | 2.056(4)                                     | 2.070(5)                                             | A 2.181(5)<br>B 2.188(5) | 2.230(4)                             | 2.318(4) 2.328(4)                                     |  |
| мс <sup>4</sup>                        | -                                       | 2.024(5)                                     | 2.039(5)                                             | A 2.174(5)<br>B 2.178(5) | 2.187(4)                             | 2.074(4) 2.073(4)                                     |  |
| М-В                                    | _<br>_                                  | 2.085(6)                                     | 2.086(6)                                             | A 2.266(6)<br>B 2.281(6) | 2.258(5)                             | 2.093(5) 2.091(5)                                     |  |
| $C^3-R^3$                              | A 1.521(5)<br>B 1.516(7)                | 1.505(7)                                     | 1.526(8)                                             | A 1.527(8)<br>B 1.510(8) | 1.497(6)<br>—                        | 1.454(6) 1.443(6)<br>—                                |  |
| $C^4-R^4$                              | A 1.523(4)<br>B 1.777(8) <sup>b</sup> ) | 1.525(7)                                     | 1.508(7)                                             | A 1.531(8)<br>B 1.524(8) | 1.529(7)                             | 1.512(5) 1.526(5)                                     |  |

<sup>a)</sup> SP = Schwerpunkt.  $-^{b)}$  Fehlordnung an C44  $\equiv$  C<sup>4</sup>.

| Atom-                             | Winkelgröße in °                                     |                                                                      |                                                             |                                                                        |                                                 |                                        |                                |
|-----------------------------------|------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------|--------------------------------|
| gruppierung <sup>a)</sup>         | (CO) <sub>3</sub> Cr-η <sup>6</sup> -5a              | С <sub>5</sub> Н <sub>5</sub> Со- <b></b> 1 <sup>4</sup> -7 <b>d</b> | С <sub>5</sub> Н <sub>5</sub> Со- <b>η<sup>4</sup>-5а</b> - | $C_2H_4(Cl)Ir-\eta^4-4a$                                               | (C2H4Rh-                                        | (Ni-η <sup>3</sup> η <sup>4</sup> -    | 4bb') <sub>2</sub>             |
|                                   | (2 Mol A, B)                                         |                                                                      | η <sup>6</sup> Cr(CO) <sub>3</sub>                          | (2 Mol A, B)                                                           | η <sup>1</sup> η <sup>4</sup> -3a) <sub>2</sub> |                                        |                                |
| N-Si-C <sup>3</sup>               | A 94.1(1)<br>B 94.7(2)                               | 88.4(2)                                                              | 88.8(2)                                                     | A 88.1(2)<br>B 88.4(2)                                                 | 91.4(2)                                         | 92.3(2)                                | 92.6(2)                        |
| si-c <sup>3</sup> -c <sup>4</sup> | A 110.1(2)<br>B 109.3(3)                             | 107.7(3)<br>                                                         | 108.7(4)                                                    | A 109.0(4)<br>B 108.4(4)                                               | 104.7(3)                                        | 104.0(2)                               | 103.3(3)                       |
| в-с <sup>4</sup> -с <sup>3</sup>  | A 114.4(3)<br>B 114.9(4)                             | 113.8(4)                                                             | 113.8(4)                                                    | A 112.3(4)<br>B 113.5(5)                                               | 113.7(4)                                        | 114.2(3)                               | 114.9(3)                       |
| N-B-C <sup>4</sup>                | A 111.1(3)<br>B 111.4(4)                             | 106.0(4)<br>—                                                        | 106.9(4)                                                    | A 106.5(4)<br>B 107.0(4)                                               | 108.1(3)                                        | 108.8(3)                               | 108.0(3)                       |
| Si-N-B                            | A 109.9(2)<br>B 109.7(3)                             | 111.1(3)                                                             | 109.1(3)                                                    | A 109.5(3)<br>B 109.0(3)                                               | 106.2(3)                                        | 107.7(3)                               | 108.3(3)                       |
| Si-N-R <sup>1</sup>               | A 121.8(2)<br>B 127.8(2)                             | 124.6(27)                                                            | 126.2(3)                                                    | A 121.4(4)<br>B 122.1(4)                                               | 90.4(1)<br>129.5(2)                             | 122.3(3)                               | 122.2(3)                       |
| B-N-R <sup>1</sup>                | A 128.3(3)<br>B 122.4(3)                             | 121.6(26)                                                            | 118.3(3)                                                    | A 123.8(4)<br>B 123.4(4)                                               | 123.6(3)                                        | 123.1(3)                               | 123.2(3)                       |
| N-Si-R <sup>2</sup>               | A 111.0(1)<br>A 113.8(1)<br>B 113.9(2)<br>B 111.1(2) | 109.3(2)<br>116.2(2)<br>—<br>—                                       | 111.9(2)(C12)<br>113.7(2)(C13)<br>                          | A 112.4(3)(C6)<br>A 111.9(2)(C7)<br>B 112.6(3)(C26)<br>B 110.2(2)(C27) | 117.4(2)(C6)<br>110.2(2)(C7)<br>_               | 110.5(2)(C6)<br>110.2(2)(C7)<br>-<br>- | 110.2(2)(C26)<br>112.0(2)(C27) |
| Si-C <sup>3</sup> -R <sup>3</sup> | A 123.4(2)<br>B 123.1(3)                             | 125.8(4)                                                             | 124.2(4)                                                    | A 124.2(4)<br>B 124.0(4)                                               | 126.8(3)                                        | 124.3(3)                               | 124.3(3)                       |
| $C^{3}-C^{4}-R^{4}$               | A 123.0(3)<br>B 124.9(4)                             | 124.7(4)                                                             | 122.1(4)                                                    | A 123.3(5)<br>B 123.6(5)                                               | 122.5(4)                                        | 125.8(3)                               | 125.6(3)                       |
| SiM-B                             | -<br>-                                               | 67.8(2)<br>—                                                         | 67.8(1)<br>                                                 | A 63.1(2)<br>B 63.1(2)                                                 | 60.9(1)                                         | 61.8(1)                                | 61.9(1)                        |
| Si…M−N                            | -<br>-                                               | 41.6(1)                                                              | 41.8(1)                                                     | A 39.9(1)<br>B 40.3(1)                                                 | 39.3(1)                                         | 38.2(1)                                | 38.2(1)                        |
| N-M-B                             | _<br>_                                               | 42.5(2)                                                              | 43.3(2)                                                     | A 39.2(2)<br>B 39.1(2)                                                 | 39.1(2)                                         | 40.9(1)                                | 40.6(1)                        |

Tab. 2. Charakteristische Winkel der (Ligand)Übergangsmetall-π-NSiC<sub>2</sub>B-Komplexe

<sup>a)</sup> Bezeichnung der Atome El<sup>x</sup> nach Formel I (Bezifferung nach chemischer Nomenklatur).

Tab. 3. Charakteristische Interplanarwinkel der (Ligand)Übergangsmetall-π-NSiC<sub>2</sub>B-Komplexe

| Interplanar-                                                      | Winkelgrade (°) gerundet  |                      |                               |                          |                                    |                                                       |  |
|-------------------------------------------------------------------|---------------------------|----------------------|-------------------------------|--------------------------|------------------------------------|-------------------------------------------------------|--|
| winkel <sup>a)</sup>                                              | $(CO)_3 Cr - \eta^6 - 5a$ | $C_5H_5Co-\eta^4-7d$ | C5H5C0-94-5a-                 | $C_2H_4(Cl)Ir-\eta^4-4a$ | (C <sub>2</sub> H <sub>4</sub> Rh- | (Ni-η <sup>3</sup> η <sup>4</sup> -4bb') <sub>2</sub> |  |
|                                                                   | (2 Mol A, B)              |                      | $\eta^6$ -Cr(CO) <sub>3</sub> | (2 Mol A, B)             | $\eta^1\eta^4$ -3a) <sub>2</sub>   |                                                       |  |
| NBC <sup>4</sup> C <sup>3</sup> /C <sup>2</sup> SiC <sup>2'</sup> | A 93<br>B 89              | 96<br>-              | 87                            | 95<br>96                 | 94<br>-                            | 86<br>(89)                                            |  |
| NBC <sup>4</sup> C <sup>3</sup> /NSiC <sup>2</sup>                | A 70<br>B 64              | 43<br>-              | 44<br>-                       | A 46<br>B 45             | 41                                 | 38<br>(37)                                            |  |
| NBC <sup>4</sup> C <sup>3</sup> /NSiC <sup>3</sup>                | A 5<br>B 1                | 32<br>-              | 32                            | A 34<br>B 33             | 36<br>-                            | 32<br>(32)                                            |  |

<sup>a)</sup> Atombezeichnung El<sup>x</sup> (chem. Numerierung) nach Formel I.

vergleichen, da Übergangsmetalle mit unterschiedlicher Elektronenkonfiguration vorliegen. Allgemein läßt sich sagen, daß in den  $\eta^4$ -komplexierten 2,5-Dihydro-1,2,5-azasilaborol-Ringen von C<sub>5</sub>H<sub>5</sub>Co- $\eta^4$ -**7d** (Abb. 2), C<sub>5</sub>H<sub>5</sub>Co- $\eta^4$ -**5a**- $\eta^6$ -Cr(CO)<sub>3</sub> (Abb. 3), C<sub>2</sub>H<sub>4</sub>(Cl)Ir- $\eta^4$ -**4a** (Abb. 4) und (Ni- $\eta^3\eta^4$ -**4bb**')<sub>2</sub> (Abb. 6) das planare 4 $\pi$ -Ringsystem eine Abwinkelung zur Envelope-Form erfährt. Das Silicium-Atom wird dabei wegen der Umhybridisierung der Atome C<sup>3</sup> und N

um etwa 33 °C aus der N,B,C<sup>3</sup>,C<sup>4</sup>-Ebene abgeknickt (vgl. Tab. 3). Beim nicht direkt vergleichbaren Rhodium-Komplex ( $C_2H_4Rh-\eta^1\eta^4$ -**3a**)<sub>2</sub> ist diese Abwinkelung wegen des  $\sigma$ -gebundenen Brücken-Stickstoffatoms sowie wegen sterischer Wechselwirkungen der Dimethylsilyl-Gruppen mit 36° noch deutlicher ausgeprägt.

Die Verbindungen  $(C_2H_4Rh-\eta^1\eta^4-3a)_2$  (Abb. 5) und (Ni- $\eta^3\eta^4-4bb')_2$  (Abb. 6) mit jeweils doppelter Verknüpfung des











Liganden an die zwei Metall-Atome sind von besonderem Interesse. Während in  $(C_2H_4Rh-\eta^1\eta^4-3a)_2$  (Abb. 5), bedingt durch ein Inversionszentrum, identische Bindungsverhältnisse an beiden 16e-Rh-Metallzentren vorliegen, sind in (Ni- $\eta^3\eta^4-4bb')_2$  (Abb. 6) die Nickel-Atome mit *trans-* $\pi$ -Allyl-



Abb. 3. Molekülstruktur von [ $(\eta^5$ -Cyclopentadienyl)cobalt]- $\mu$ - $(\eta^4$ -4,5-diethyl-2,5-dihydro-2,2,3-trimethyl-1*H*-1,2,5-azasilaborol-1-yl- $\eta^6$ -benzol)chrom [ $C_5H_5$ Co- $\eta^4$ -**5a**- $\eta^6$ -Cr(CO)<sub>3</sub>]; abgebildet: cycloS-



Abb. 4. Molekülstruktur von ( $\eta^4$ -4,5-Diethyl-2,5-dihydro-1,2,2,3-te-tramethyl-1*H*-1,2,5-azasilaborol)( $\eta^2$ -ethen)iridium-chlorid [ $C_2H_4(Cl)Ir-\eta^4$ -4a]



Abb. 5. Molekülstruktur von dimerem meso- $(\eta^4-4,5-Diethyl-2,5-di-hydro-2,2,3-trimethyl-1H-1,2,5-azasilaborolyl)(\eta^2-ethen)rhodium [(C<sub>2</sub>H<sub>4</sub>)Rh-\eta^1\eta^4-3a]<sub>2</sub>$ 

gruppen (Ni2) sowie dem  $4\pi$ -Ringsystem (Ni1) unterschiedlich koordiniert.

In beiden Verbindungen bildet ein Ringatom, und zwar das Stickstoff-Atom in  $(C_2H_4Rh - \eta^1\eta^4 - 3a)_2$  (Abb. 5) oder ein Kohlenstoff-Atom in  $(Ni-\eta^3\eta^4 - 4bb')_2$  (Abb. 6), die Brücke zwischen den beiden Metall-Atomen. Der Metall-Metall-Abstand in  $(C_2H_4Rh-\eta^1\eta^4 - 3a)_2$  beträgt 3.121(1) Å, weshalb eine direkte Wechselwirkung der Rhodium-Atome auszuschließen ist. Vom dimeren  $(C_2H_4Rh-3a)_2$  existieren zwei Isomere<sup>1)</sup>. Das hier vorliegende, thermisch stabilere rote Isomer  $(C_2H_4Rh-\eta^1\eta^4 - 3a)_2$  hat einen zentrosymmetrischen Aufbau mit  $C_i$ -Symmetrie (vgl. Abb. 5). Die beiden Rhodium-Atome besetzen jeweils annähernd das Zentrum verzerrter Quadrate (Q und Q\*),  $(D1-Rh-D2 \ 60.1^\circ,$  $D2-Rh-N* 96.4^\circ, D1-Rh-D3 \ 106.2^\circ, D3-Rh-N*$  $98.0^\circ, D1: C1-C2, D2: N-B, D3: C10-C11)$ , so daß ein







Abb. 7. Packung von je zwei Cyclodiastereomeren des R- und S-C<sub>5</sub>H<sub>5</sub>Co- $\eta^4$ -7d-Moleküls (*exo*-Ph<sup>2</sup>) in der Elementarzelle

QQ\*-Isomer resultiert. Die braune Verbindung unbekannter Struktur<sup>1)</sup> ist vermutlich das QT-Isomer (T = Tetraeder), analog zu dem tiefroten QT-Dirhodium-Komplex  $[(OC)_2Rh-\eta^1-P(tBu)_2]_2^{16}$ .

In  $(Ni-\eta^3\eta^4-4bb')_2$  (Abb. 6) mit einem Ni1 – Ni2-Abstand von 2.643(1) Å ist eine Ni – Ni-Wechselwirkung wahrscheinlich.

## Cycloenantiomere (Ligand)Übergangsmetall-NSiC<sub>2</sub>B-π-Komplexe im Kristallgitter

Das (Ligand)Übergangsmetall-Fragment wird an der C<sub>2</sub>BN-Atomgruppierung des cycloenantiotopen 2,5-Dihydro-1*H*-1,2,5-azasilaborols chiral  $\eta^4$ -komplexiert. Die dabei



Abb. 8. Packung von je zwei *cycloR*- und *cycloS*-C<sub>5</sub>H<sub>5</sub>Co-η<sup>4</sup>-**5a**-η<sup>6</sup>-Cr(CO)<sub>3</sub>-Molekülen in der Elementarzelle



Abb. 9. Packung der cycloR- und cycloS-Stereoisomere A und B von  $C_2H_4(Cl)Ir-\eta^4$ -4a in der Elementarzelle

entstehenden Cycloenantiomeren bezeichnen wir in Anlehnung an die eingeführten R/S-Symbole als cycloR- und cycloS-Form. Für das cycloR-Enantiomer soll definitionsgemäß gelten, daß beim Blick vom Metall auf den Hetero-



Abb. 10. Packung der meso- $(C_2H_4Rh-\eta^1\eta^4-3a)_2$ -Moleküle in der Elementarzelle

cyclus die Atome N<sup>1</sup>-Si<sup>2</sup>-C<sup>3</sup>-C<sup>4</sup>-B<sup>5</sup> im Uhrzeigersinn aufeinander folgen. Die Atomsequenz NSiCCB wurde in Abkehr von der Schweratom-Priorität (Si), aber in Übereinstimmung mit der Atomprioritätsregel für die Austausch-(sog. a-)Nomenklatur der IUPAC gewählt. Dadurch lassen sich zwanglos auch alle weiteren  $\eta^4$ -komplexfähigen El-SiC<sub>2</sub>B-Cyclen mit El = S<sup>5</sup>, Se<sup>6</sup>, P<sup>7</sup>) in die hier eingeführte



Abb. 11. Packung der meso-Ni-(η<sup>3</sup>η<sup>4</sup>-4bb')<sub>2</sub>-Moleküle in der Elementarzelle

Tab. 4. Daten zu den Kristallstrukturanalysen von  $(OC)_3Cr-\eta^6$ -**5a** und den fünf LM- $\eta^4$ -NSiC<sub>2</sub>B-Komplexen (bei der Raumgruppe in Klammern Nr. der International Tables)

| Daten                                        |            | $(OC)_3 Cr - \eta^6 - 5a$                             | $C_{s}H_{s}Co-\eta^{4}-7d$             | $C_5H_5Co-\eta^4-5a-\eta^6-Cr(CO)_3$ | $C_2H_4(Cl)Ir-\eta^4-4a$                 | $(C_2H_4Rh-\eta^1\eta^4-3a)_2$                                                             | (Ni-η <sup>3</sup> η <sup>4</sup> -4bb <sup>*</sup> ) <sub>2</sub> |
|----------------------------------------------|------------|-------------------------------------------------------|----------------------------------------|--------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Summenformel                                 |            | C <sub>18</sub> H <sub>24</sub> BCrNO <sub>3</sub> Si | C <sub>19</sub> H <sub>27</sub> BCoNSi | C23H29BCrCoNO3Si                     | C <sub>12</sub> H <sub>26</sub> BClIrNSi | $\mathrm{C}_{22}\mathrm{H}_{46}\mathrm{B}_{2}\mathrm{N}_{2}\mathrm{Rh}_{2}\mathrm{Si}_{2}$ | $C_{24}H_{48}B_2N_2Ni_2Si_2$                                       |
| Molmasse                                     |            | 393.3                                                 | 367.3                                  | 517.3                                | 450.9                                    | 622.2                                                                                      | 559.9                                                              |
| Kristalldaten                                |            |                                                       |                                        |                                      |                                          |                                                                                            |                                                                    |
| Größe [mm]                                   |            | 0.22 x 0.40 x 0.47                                    | 0.28 x 0.26 x 0.08                     | 0.11 x 0.40 x 0.43                   | 0.31 x 0.20 x 0.26                       | 0.09 x 0.16 x 0.17                                                                         | 0.43 x 0.65 x 0.65                                                 |
| System                                       |            | monoklin                                              | monoklin                               | monoklin                             | triklin                                  | monoklin                                                                                   | monoklin                                                           |
| Farbe                                        |            | gelb                                                  | dunkelgrün                             | schwarzgrün                          | rot                                      | rot                                                                                        | dunkelrot                                                          |
| Zelldimensionen                              |            |                                                       |                                        |                                      |                                          |                                                                                            |                                                                    |
| Achsen [Å]                                   | a          | 22.835(2)                                             | 8.382(2)                               | 11.785(3)                            | 14.753(3)                                | 10.630(1)                                                                                  | 16.939(2)                                                          |
|                                              | ь          | 14.247(2)                                             | 15.889(4)                              | 14.004(5)                            | 8.038(2)                                 | 11.099(2)                                                                                  | 8.987(1)                                                           |
|                                              | С          | 12.381(2)                                             | 14.832(2)                              | 15.851(3)                            | 15.589(1)                                | 12.837(1)                                                                                  | 21.035(1)                                                          |
| Winkel {°}                                   | α          | 90                                                    | 90                                     | 90                                   | 89.29(1)                                 | 90                                                                                         | 90                                                                 |
|                                              | β          | 93.91(1)                                              | 91.12(2)                               | 104.73(1)                            | 111.74(1)                                | 104.64(1)                                                                                  | 113.09(1)                                                          |
| _                                            | Ŷ          | 90                                                    | 90                                     | 90                                   | 89.46(1)                                 | 90                                                                                         | 90                                                                 |
| Volumen (Å                                   | ำ          | 4018.5                                                | 1974.9(7)                              | 2530.0                               | 1716.8                                   | 1465.4                                                                                     | 2945.6                                                             |
| Ber. Dichte [gcm                             | ']         | 1.30                                                  | 1.23                                   | 1.36                                 | 1.74                                     | 1.41                                                                                       | 1.26                                                               |
| Raumgruppe                                   |            | $P2_1/c_{-}(14)$                                      | P2 <sub>1</sub> /n (14)                | $P2_1/c$ (14)                        | <b>P</b> T (2)                           | $P2_1/n$ (14)                                                                              | P2 <sub>1</sub> /n (14)                                            |
| Z                                            |            | 8                                                     | 4                                      | 4                                    | 4                                        | 2                                                                                          | 4                                                                  |
| Diffraktometer                               |            | Nonius CAD-4                                          | Nicolet R3m/V                          | Nonius CAD-4                         | Nonius CAD-4                             | Nonius CAD-4                                                                               | Nonius CAD-4                                                       |
| $\mu(Mo-K\alpha)$ [cm <sup>-1</sup>          | 1          | 6.27                                                  | 9.24                                   | 11.42                                | 79.58 (AbsKorr.)                         | 12.01                                                                                      | 13.79                                                              |
| λ[Å]                                         |            | 0.71069                                               | 0.71069                                | 0.71069                              | 0.71069                                  | 0.71069                                                                                    | 0.71069                                                            |
| Meßtemperatur [°                             | C]         | 20                                                    | 20                                     | 20                                   | 20                                       | 20                                                                                         | 20                                                                 |
| Datensammlung                                |            | ω-2Θ                                                  | ω-scan                                 | ω-2Θ                                 | ω-2 <del>0</del>                         | ω-2 <del>0</del>                                                                           | ω-2Θ                                                               |
| F(000)                                       |            | 1648                                                  | 772                                    | 1072                                 | 872                                      | 640                                                                                        | 1200                                                               |
| Anzahl der Refle                             | хе         |                                                       |                                        |                                      |                                          |                                                                                            |                                                                    |
| gemessen                                     |            | 14171                                                 | 6290                                   | 6177                                 | 9901                                     | 3618                                                                                       | 7272                                                               |
| unabhängig                                   |            | 9056                                                  | 5762                                   | 5737                                 | 9901                                     | 3302                                                                                       | 6641                                                               |
| beobachtet                                   |            | 6132 [Fo $\geq 2\sigma$ F]                            | 3010 [F₀ ≥ 3.5σF]                      | $3099 [F_0 \ge 2\sigma F]$           | 6974 [Fo $\geq 2\sigma$ F]               | 2196 [F <sub>0</sub> $\geq$ 2 $\sigma$ F]                                                  | 4629 [Fo $\geq 2\sigma$ F]                                         |
| sin $\Theta/\lambda_{max}$ $[Å^{-1}]$        |            | 0.65                                                  | 0.70                                   | 0.65                                 | 0.70                                     | 0.65                                                                                       | 0.65                                                               |
| Verfeinerte Paran                            | neter      | 451                                                   | 209                                    | 280                                  | 307                                      | 136                                                                                        | 289                                                                |
| Strukturlösung                               |            | Schweratommethode                                     | Direkte Methode                        | Direkte Methode                      | Schweratommethode                        | Schweratommethode                                                                          | Schweratommethode                                                  |
| R                                            |            | 0.048                                                 | 0.073                                  | 0.049                                | 0.028                                    | 0.032                                                                                      | 0.045                                                              |
| $R_w (w = 1/\sigma^2 [Formax, Restelection]$ | ))<br>)en- | 0.057                                                 | 0.068                                  | 0.052                                | 0.033                                    | 0.039                                                                                      | 0.054                                                              |
| dichte [eÅ <sup>-3</sup> ]                   |            | 0.69                                                  | 0.50                                   | 0.50                                 | 1.3 (um lr)                              | 0.68                                                                                       | 0.77                                                               |

Prioritätssequenz für die Cycloenantiomerie am Metall einreihen. Der IUPAC-Regel folgend erzielt man ein von den exo-Substituenten unabhängiges, praktikables Bezugssystem für die cycloenantiotopen Ringverbindungen und die daraus resultierenden, am Metall  $\eta^4$ -gebundenen cycloenantiomeren 5-Ringe. Falls das prochirale Silicium-Atom verschiedene *exo*-Substituenten trägt, liegt wie z. B. in 7d ein cyclodiastereotopes Ringmolekül vor. Am chiralen Si-Atom kehrt sich die Enantiomerie-Bezeichnung (R/S) definitionsgemäß um, falls der freie Ligand am Metall  $\eta^4$ -gebunden wird.

In den Abbildungen 7–11 findet man die Darstellung der Elementarzellen der fünf  $\eta^4$ -Komplexe C<sub>5</sub>H<sub>5</sub>Co- $\eta^4$ -7d, C<sub>5</sub>H<sub>5</sub>Co- $\eta^4$ -5a- $\eta^6$ -Cr(CO)<sub>3</sub>, C<sub>2</sub>H<sub>4</sub>(Cl)Ir- $\eta^4$ -4a, (C<sub>2</sub>H<sub>4</sub>Rh- $\eta^1\eta^4$ -3a)<sub>2</sub> und (Ni- $\eta^3\eta^4$ -4bb')<sub>2</sub>.

Bei  $C_{s}H_{5}Co-\eta^{4}$ -7d und allen weiteren Verbindungen mit cyclodiastereotopem R/S-7d-Ring (chirales Si-Atom im isolierten 7d) tritt in der Einheitszelle raumgruppenbedingt (vgl. Abb. 7) nur ein Cycloenantiomerenpaar (definitionsgemäß racemoides Racemat) auf, da die Phenylgruppe am

Tab. 5. Atomkoordinaten (mit Standardabweichungen in Klammern) und thermische Parameter von  $(OC)_3Cr-\eta^6$ -5a (Rotamere A und B; vgl. Abb. 1,  $U_{eq} = 1/3\sum_i \sum_j U_{ij}a_i^*a_j^*a_ia_j$ )

| AtomxyzUeq $Cr(1)$ 0.2559(1)0.2088(1)0.0724(1)0.040 $Si(2)$ 0.7475(1)0.1577(1)0.4428(1)0.041 $Si(1)$ 0.4020(1)0.0120(1)0.2512(1)0.038 $Si(2)$ 0.9227(1)0.2494(1)0.4552(1)0.060 $O(11)$ 0.2396(1)0.3627(2)-0.0885(2)0.080 $O(12)$ 0.2296(1)0.3627(2)0.2070(3)0.088 $O(13)$ 0.1665(1)0.2949(2)0.2070(3)0.094 $O(33)$ 0.6210(1)0.1801(3)0.4892(3)0.091 $O(33)$ 0.6210(1)0.0877(2)0.1400(2)0.037 $N(2)$ 0.8924(1)0.0877(2)0.1400(2)0.037 $N(2)$ 0.8924(1)0.1547(2)0.3781(2)0.048 $(11)$ 0.3292(1)0.0953(2)0.0272(3)0.052 $C(13)$ 0.2007(2)0.2603(3)0.1541(3)0.055 $C(14)$ 0.3252(1)0.0915(2)0.0911(3)0.039 $C(15)$ 0.3130(1)0.1124(2)-0.0200(3)0.044 $C(19)$ 0.2771(1)0.0716(2)0.1542(3)0.048 $C(20)$ 0.4916(1)0.1020(2)0.1769(2)0.485 $C(18)$ 0.2192(2)0.0652(3)0.0148(4)0.065 $C(18)$ 0.2192(2)0.0793(3)-0.0791(3)0.072 $C(24)$ 0.5555(1)0.1407(3)0.1599(3)0.054 $C(20)$ 0.4357(2)0.2215(2)0.386(3)0.698 $C(24)$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |           |            |            |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|------------|------------|-------|
| $ \begin{array}{c} \mathbf{Cr(1)} & 0.2559(1) & 0.2088(1) & 0.0724(1) & 0.040 \\ \mathbf{Cr(2)} & 0.7475(1) & 0.1577(1) & 0.4428(1) & 0.041 \\ \mathbf{S1(1)} & 0.4020(1) & 0.0120(1) & 0.2512(1) & 0.038 \\ \mathbf{S1(2)} & 0.9227(1) & 0.2494(1) & 0.4552(1) & 0.050 \\ \mathbf{O(11)} & 0.3430(1) & 0.3281(2) & 0.2014(3) & 0.081 \\ \mathbf{O(12)} & 0.2296(1) & 0.3627(2) & -0.0885(2) & 0.080 \\ \mathbf{O(13)} & 0.1665(1) & 0.2949(2) & 0.2070(3) & 0.088 \\ \mathbf{O(31)} & 0.7600(2) & 0.3584(2) & 0.5110(3) & 0.094 \\ \mathbf{O(32)} & 0.6210(1) & 0.1801(3) & 0.4892(3) & 0.091 \\ \mathbf{O(33)} & 0.7739(1) & 0.0955(2) & 0.6720(2) & 0.037 \\ \mathbf{N(2)} & 0.8892(1) & 0.1547(2) & 0.3781(2) & 0.048 \\ \mathbf{C(11)} & 0.3097(2) & 0.2824(2) & 0.1504(3) & 0.052 \\ \mathbf{C(12)} & 0.2405(2) & 0.3037(3) & -0.272(3) & 0.052 \\ \mathbf{C(13)} & 0.2007(2) & 0.2603(3) & 0.1541(3) & 0.055 \\ \mathbf{C(14)} & 0.3252(1) & 0.0915(2) & 0.0911(3) & 0.039 \\ \mathbf{C(15)} & 0.3130(1) & 0.1124(2) & -0.0200(3) & 0.047 \\ \mathbf{C(16)} & 0.2546(2) & 0.1097(3) & -0.0663(3) & 0.0663 \\ \mathbf{C(17)} & 0.2078(2) & 0.0692(3) & -0.1541(3) & 0.065 \\ \mathbf{C(18)} & 0.2192(2) & 0.0692(3) & -0.1048(4) & 0.062 \\ \mathbf{C(19)} & 0.2771(1) & 0.0716(2) & 0.1542(3) & 0.048 \\ \mathbf{C(20)} & 0.4916(1) & 0.1020(2) & 0.2704(3) & 0.074 \\ \mathbf{C(21)} & 0.4818(1) & 0.0361(2) & 0.2504(3) & 0.044 \\ \mathbf{C(22)} & 0.4957(2) & 0.2215(2) & 0.0265(3) & 0.074 \\ \mathbf{C(23)} & 0.4649(2) & 0.2093(3) & -0.0791(3) & 0.072 \\ \mathbf{C(24)} & 0.5525(1) & 0.1407(3) & 0.1599(3) & 0.058 \\ \mathbf{C(28)} & 0.3742(2) & 0.0525(3) & 0.3816(3) & 0.058 \\ \mathbf{C(28)} & 0.3742(2) & 0.0525(3) & 0.3816(3) & 0.058 \\ \mathbf{C(33)} & 0.766(2) & 0.1195(2) & 0.2959(2) & 0.047 \\ \mathbf{C(34)} & 0.8920(1) & 0.1919(2) & 0.2959(2) & 0.047 \\ \mathbf{C(35)} & 0.7363(2) & 0.1452(4) & 0.3680(5) & 0.104 \\ \mathbf{C(35)} & 0.7363(2) & 0.1452(4) & 0.3680(5) & 0.106 \\ \mathbf{C(44)} & 0.9907(2) & 0.2203(3) & 0.4854(3) & 0.059 \\ \mathbf{C(33)} & 0.766(2) & 0.1195(2) & 0.2959(2) & 0.047 \\ \mathbf{C(44)} & 0.904(2) & 0.0184(3) & 0.3621(3) & 0.058 \\ \mathbf{C(44)} & 1.005(2) & 0.1452(4) & 0.3680(5) & 0.106 \\ \mathbf{C(44)} & 0.905(2) & 0.1452(4) & 0.3680(5) & 0.106 \\ \mathbf{C(44)} & 0.9065(2) & 0.2385(7) & 0.2951(7) & 0.72 \\ C$         | Atom  | x         | У          | z          | Ueq   |
| $\begin{array}{c} \mathbf{Cr}(2) & 0.7475(1) & 0.1577(1) & 0.4428(1) & 0.041\\ \mathbf{Si}(1) & 0.4020(1) & 0.0120(1) & 0.2512(1) & 0.038\\ \mathbf{Si}(2) & 0.9227(1) & 0.2494(1) & 0.4552(1) & 0.080\\ \mathbf{O}(11) & 0.3430(1) & 0.3281(2) & 0.2014(3) & 0.081\\ \mathbf{O}(12) & 0.2296(1) & 0.3627(2) & -0.0885(2) & 0.800\\ \mathbf{O}(13) & 0.1665(1) & 0.2949(2) & 0.2070(3) & 0.088\\ \mathbf{O}(31) & 0.7600(2) & 0.3584(2) & 0.5110(3) & 0.994\\ \mathbf{O}(32) & 0.6210(1) & 0.1801(3) & 0.4892(3) & 0.911\\ \mathbf{O}(33) & 0.7739(1) & 0.0953(2) & 0.6720(2) & 0.070\\ \mathbf{N}(1) & 0.3829(1) & 0.0877(2) & 0.1400(2) & 0.037\\ \mathbf{N}(2) & 0.8924(1) & 0.1547(2) & 0.1400(2) & 0.037\\ \mathbf{N}(2) & 0.8924(1) & 0.1547(2) & 0.1400(2) & 0.052\\ \mathbf{C}(12) & 0.2405(2) & 0.3037(3) & -0.0272(3) & 0.052\\ \mathbf{C}(13) & 0.2007(2) & 0.2603(3) & 0.1541(3) & 0.055\\ \mathbf{C}(14) & 0.3252(1) & 0.0915(2) & 0.9911(3) & 0.039\\ \mathbf{C}(15) & 0.3130(1) & 0.1124(2) & -0.0200(3) & 0.047\\ \mathbf{C}(16) & 0.2546(2) & 0.1097(3) & -0.0663(3) & 0.660\\ \mathbf{C}(17) & 0.2078(2) & 0.0875(3) & -0.0046(4) & 0.665\\ \mathbf{C}(18) & 0.2192(2) & 0.0692(3) & 0.1048(4) & 0.662\\ \mathbf{C}(18) & 0.2192(2) & 0.0692(3) & 0.1048(4) & 0.662\\ \mathbf{C}(19) & 0.2771(1) & 0.0716(2) & 0.1542(3) & 0.048\\ \mathbf{C}(20) & 0.4916(1) & 0.1020(2) & 0.1769(2) & 0.046\\ \mathbf{C}(21) & 0.4818(1) & 0.0361(2) & 0.2504(3) & 0.044\\ \mathbf{C}(22) & 0.4557(2) & 0.2215(2) & 0.0265(3) & 0.055\\ \mathbf{C}(23) & 0.4569(2) & 0.2093(3) & -0.0791(3) & 0.072\\ \mathbf{C}(24) & 0.5525(1) & 0.1407(3) & 0.1599(3) & 0.054\\ \mathbf{C}(25) & 0.5878(2) & 0.0766(3) & 0.914(3) & 0.072\\ \mathbf{C}(24) & 0.7938(1) & 0.1919(2) & 0.2959(2) & 0.047\\ \mathbf{C}(34) & 0.7938(1) & 0.1919(2) & 0.2959(2) & 0.047\\ \mathbf{C}(35) & 0.7938(1) & 0.1919(2) & 0.2959(2) & 0.047\\ \mathbf{C}(34) & 0.7936(2) & 0.1452(4) & 0.3680(5) & 0.106\\ \mathbf{C}(41) & 0.997(2) & 0.2203(3) & 0.4384(3) & 0.059\\ \mathbf{C}(33) & 0.7640(2) & 0.1195(2) & 0.3936(3) & 0.058\\ \mathbf{C}(34) & 0.7938(1) & 0.1919(2) & 0.2959(2) & 0.047\\ \mathbf{C}(42) & 0.9241(3) & 0.062(6) & 0.315(7) & 0.172\\ \mathbf{C}(44) & 1.0615(3) & 0.1088(5) & 0.2966(5) & 0.128\\ \mathbf{C}(45) & 1.0808(4) & 0.0602(6) & 0.3815(7) & 0.180\\ \mathbf{C}(44) & 1.0905(2) & 0.2385(3) & 0.4002($ | Cr(1) | 0.2559(1) | 0.2088(1)  | 0.0724(1)  | 0.040 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cr(2) | 0.7475(1) | 0.1577(1)  | 0.4428(1)  | 0.041 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Si(1) | 0.4020(1) | 0.0120(1)  | 0.2512(1)  | 0.038 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Si(2) | 0.9227(1) | 0.2494(1)  | 0.4552(1)  | 0.050 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | orini | 0.3430(1) | 0.3281(2)  | 0.2014(3)  | 0.081 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0(12) | 0.2296(1) | 0.3627(2)  | -0.0885(2) | 0.080 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0(13) | 0.1665(1) | 0.2949(2)  | 0.2070(3)  | 0.088 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0(31) | 0.7600(2) | 0.3584(2)  | 0.5110(3)  | 0.094 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0(32) | 0.6210(1) | 0.1801(3)  | 0.4892(3)  | 0.091 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0(33) | 0.7739(1) | 0.0953(2)  | 0.6720(2)  | 0.070 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N(1)  | 0.3829(1) | 0.0877(2)  | 0.1400(2)  | 0.037 |
| C(11) 0.3097(2) 0.2824(2) 0.1504(3) 0.052<br>C(12) 0.2405(2) 0.3037(3) $-0.0272(3)$ 0.055<br>C(13) 0.2007(2) 0.2603(3) 0.1541(3) 0.055<br>C(14) 0.3252(1) 0.0915(2) 0.0911(3) 0.039<br>C(15) 0.3130(1) 0.1124(2) $-0.0200(3)$ 0.047<br>C(16) 0.2546(2) 0.0097(3) $-0.0663(3)$ 0.060<br>C(17) 0.2078(2) 0.0875(3) $-0.0046(4)$ 0.065<br>C(18) 0.2192(2) 0.0692(3) 0.1048(4) 0.062<br>C(19) 0.2771(1) 0.0716(2) 0.1542(3) 0.048<br>C(20) 0.4916(1) 0.1020(2) 0.1769(2) 0.040<br>C(21) 0.4818(1) 0.1020(2) 0.1769(2) 0.040<br>C(21) 0.4818(1) 0.0361(2) 0.2504(3) 0.044<br>C(22) 0.4357(2) 0.2215(2) 0.0255(3) 0.055<br>C(23) 0.4649(2) 0.2009(3) $-0.0791(3)$ 0.072<br>C(24) 0.5525(1) 0.1407(3) 0.1599(3) 0.054<br>C(25) 0.5878(2) 0.0766(3) 0.0914(3) 0.072<br>C(26) 0.5274(2) $-0.0103(2)$ 0.2208(3) 0.058<br>C(28) 0.3742(2) 0.0525(3) 0.3816(3) 0.059<br>C(33) 0.7640(2) 0.1195(2) 0.5838(3) 0.059<br>C(33) 0.7640(2) 0.1195(2) 0.5838(3) 0.059<br>C(33) 0.7640(2) 0.1195(2) 0.5838(3) 0.059<br>C(33) 0.7640(2) 0.1195(2) 0.2858(3) 0.058<br>C(33) 0.7640(2) 0.1195(2) 0.5838(3) 0.059<br>C(33) 0.7640(2) 0.1195(2) 0.5838(3) 0.059<br>C(33) 0.7516(2) 0.0184(3) 0.2971(3) 0.059<br>C(33) 0.7516(2) 0.0184(3) 0.2971(3) 0.054<br>C(40) 1.0005(2) 0.1452(4) 0.3308(5) 0.106<br>C(41) 0.9997(2) 0.2203(3) 0.4307(4) 0.074<br>C(42) 0.9241(3) 0.0162(4) 0.2388(7) 0.126<br>C(43) 0.9466(4) $-0.0595(7)$ 0.2951(7) 0.172<br>C(44) 1.0615(3) 0.1088(5) 0.2966(5) 0.106<br>C(41) 0.997(2) 0.2203(3) 0.4002(3) 0.078<br>R(1) 0.4344(2) 0.1376(2) 0.1093(3) 0.088<br>R(2) 0.9382(2) 0.1028(4) 0.3329(5) 0.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N(2)  | 0.8924(1) | 0.1547(2)  | 0.3781(2)  | 0.048 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | citi  | 0.3097(2) | 0.2824(2)  | 0.1504(3)  | 0.052 |
| C(13) 0.2007(2) 0.2603(3) 0.1541(3) 0.055<br>C(14) 0.3252(1) 0.0915(2) 0.0911(3) 0.039<br>C(15) 0.3130(1) 0.1124(2) $-0.0200(3)$ 0.047<br>C(16) 0.2546(2) 0.1097(3) $-0.0663(3)$ 0.060<br>C(17) 0.2078(2) 0.0875(3) $-0.0046(4)$ 0.065<br>C(18) 0.2192(2) 0.0692(3) 0.1048(4) 0.062<br>C(19) 0.2771(1) 0.0716(2) 0.1542(3) 0.044<br>C(20) 0.4916(1) 0.1020(2) 0.1769(2) 0.040<br>C(21) 0.4818(1) 0.0361(2) 0.2504(3) 0.044<br>C(22) 0.4357(2) 0.2215(2) 0.0265(3) 0.055<br>C(23) 0.4649(2) 0.2009(3) $-0.0791(3)$ 0.072<br>C(24) 0.5525(1) 0.1407(3) 0.1599(3) 0.054<br>C(25) 0.5878(2) 0.0766(3) 0.0914(3) 0.072<br>C(26) 0.5274(2) $-0.0070(3)$ 0.3308(3) 0.069<br>C(27) 0.3781(2) $-0.1103(2)$ 0.2208(3) 0.058<br>C(28) 0.3742(2) 0.0525(3) 0.3816(3) 0.059<br>C(32) 0.6698(2) 0.1712(3) 0.4718(3) 0.059<br>C(33) 0.7640(2) 0.1195(2) 0.5838(3) 0.050<br>C(34) 0.8320(1) 0.1319(2) 0.2259(2) 0.047<br>C(36) 0.7356(2) 0.1646(3) 0.2644(3) 0.059<br>C(33) 0.7640(2) 0.1195(2) 0.5838(3) 0.069<br>C(33) 0.7640(2) 0.1195(2) 0.3362(3) 0.048<br>C(33) 0.7515(2) 0.0184(3) 0.369(3) 0.059<br>C(34) 0.8320(1) 0.1319(2) 0.3566(2) 0.041<br>C(35) 0.7356(2) 0.1646(3) 0.2644(3) 0.059<br>C(36) 0.7356(2) 0.1646(3) 0.2644(3) 0.059<br>C(37) 0.7151(2) 0.0781(3) 0.2959(2) 0.047<br>C(36) 0.7356(2) 0.1452(4) 0.3380(5) 0.106<br>C(41) 0.9997(2) 0.2203(3) 0.4307(4) 0.074<br>C(42) 0.9241(3) 0.0162(4) 0.2388(7) 0.126<br>C(43) 0.9466(4) $-0.0595(7)$ 0.2951(7) 0.172<br>C(44) 1.0615(3) 0.1082(5) 0.2966(5) 0.128<br>C(45) 1.0517(2) 0.2744(4) 0.4811(5) 0.110<br>C(47) 0.9012(2) 0.3265(3) 0.4002(3) 0.078<br>B(1) 0.4344(2) 0.1376(2) 0.1093(3) 0.388<br>B(2) 0.9382(2) 0.1028(4) 0.3329(5) 0.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c(12) | 0.2405(2) | 0.3037(3)  | -0.0272(3) | 0.052 |
| C(14) $0.3252(1)$ $0.0915(2)$ $0.0911(3)$ $0.039$<br>C(15) $0.3130(1)$ $0.1124(2)$ $-0.0200(3)$ $0.047$<br>C(16) $0.2546(2)$ $0.097(3)$ $-0.0663(3)$ $0.060$<br>C(17) $0.2078(2)$ $0.0875(3)$ $-0.0046(4)$ $0.065$<br>C(18) $0.2192(2)$ $0.0692(3)$ $0.1048(4)$ $0.062$<br>C(19) $0.2771(1)$ $0.0716(2)$ $0.1542(3)$ $0.048$<br>C(20) $0.4916(1)$ $0.1020(2)$ $0.1769(2)$ $0.040$<br>C(21) $0.4818(1)$ $0.0361(2)$ $0.2504(3)$ $0.044$<br>C(22) $0.4357(2)$ $0.2215(2)$ $0.0265(3)$ $0.055$<br>C(23) $0.4649(2)$ $0.2093(3)$ $-0.0791(3)$ $0.072$<br>C(24) $0.5525(1)$ $0.1407(3)$ $0.1599(3)$ $0.054$<br>C(25) $0.5878(2)$ $0.0766(3)$ $0.914(3)$ $0.069$<br>C(27) $0.3781(2)$ $-0.1103(2)$ $0.2208(3)$ $0.058$<br>C(28) $0.3742(2)$ $0.255(3)$ $0.3816(3)$ $0.059$<br>C(33) $0.7640(2)$ $0.1195(2)$ $0.5838(3)$ $0.059$<br>C(33) $0.7640(2)$ $0.1195(2)$ $0.2858(3)$ $0.059$<br>C(33) $0.7640(2)$ $0.1195(2)$ $0.2858(3)$ $0.059$<br>C(33) $0.756(2)$ $0.01195(2)$ $0.2959(2)$ $0.047$<br>C(36) $0.7356(2)$ $0.0148(3)$ $0.2959(2)$ $0.047$<br>C(36) $0.7356(2)$ $0.0148(3)$ $0.2959(2)$ $0.047$<br>C(36) $0.7356(2)$ $0.0184(3)$ $0.2959(2)$ $0.047$<br>C(36) $0.7356(2)$ $0.0184(3)$ $0.3291(3)$ $0.054$<br>C(37) $0.7151(2)$ $0.0781(3)$ $0.2951(3)$ $0.054$<br>C(40) $1.0005(2)$ $0.1452(4)$ $0.3386(5)$ $0.106$<br>C(41) $0.9997(2)$ $0.2203(3)$ $0.4307(4)$ $0.742$<br>C(42) $0.9241(3)$ $0.0162(4)$ $0.2388(7)$ $0.126$<br>C(43) $0.9466(4)$ $-0.0595(7)$ $0.2951(7)$ $0.172$<br>C(44) $1.0615(3)$ $0.1088(5)$ $0.2966(5)$ $0.108$<br>C(44) $1.0517(2)$ $0.2744(4)$ $0.4811(5)$ $0.110$<br>C(47) $0.9012(2)$ $0.3285(3)$ $0.6000(3)$ $0.078$<br>B(1) $0.4344(2)$ $0.1376(2)$ $0.1093(3)$ $0.038$<br>B(2) $0.9382(2)$ $0.1028(4)$ $0.3329(5)$ $0.087$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c(13) | 0.2007(2) | 0.2603(3)  | 0.1541(3)  | 0.055 |
| C(15) 0.3130(1) 0.1124(2) $-0.0200(3)$ 0.047<br>C(16) 0.2546(2) 0.1097(3) $-0.0663(3)$ 0.060<br>C(17) 0.2078(2) 0.0675(3) $-0.0046(4)$ 0.065<br>C(18) 0.2192(2) 0.0692(3) 0.1048(4) 0.062<br>C(19) 0.2771(1) 0.0716(2) 0.1542(3) 0.048<br>C(20) 0.4916(1) 0.1020(2) 0.1769(2) 0.040<br>C(21) 0.4818(1) 0.0361(2) 0.2504(3) 0.044<br>C(22) 0.4357(2) 0.2215(2) 0.0265(3) 0.055<br>C(23) 0.4649(2) 0.2009(3) $-0.0791(3)$ 0.072<br>C(24) 0.5525(1) 0.1407(3) 0.1599(3) 0.054<br>C(25) 0.5878(2) 0.0766(3) 0.0914(3) 0.072<br>C(26) 0.5274(2) $-0.0070(3)$ 0.3308(3) 0.069<br>C(27) 0.3781(2) $-0.1103(2)$ 0.2208(3) 0.058<br>C(31) 0.7563(2) 0.2807(3) 0.4454(3) 0.059<br>C(33) 0.7640(2) 0.1195(2) 0.5838(3) 0.059<br>C(33) 0.7640(2) 0.1195(2) 0.5838(3) 0.059<br>C(33) 0.7640(2) 0.1195(2) 0.5838(3) 0.059<br>C(33) 0.7640(2) 0.1319(2) 0.2959(2) 0.047<br>C(36) 0.7356(2) 0.01646(3) 0.2954(3) 0.059<br>C(33) 0.7516(2) 0.0164(3) 0.2244(3) 0.059<br>C(33) 0.7516(2) 0.0184(3) 0.3621(3) 0.054<br>C(33) 0.7516(2) 0.0184(3) 0.3621(3) 0.054<br>C(34) 0.8091(2) 0.0469(2) 0.3936(3) 0.048<br>C(40) 1.0005(2) 0.1452(4) 0.3680(5) 0.106<br>C(41) 0.9997(2) 0.2203(3) 0.4307(4) 0.054<br>C(42) 0.9241(3) 0.0162(4) 0.2388(7) 0.126<br>C(44) 1.0615(3) 0.1048(5) 0.2951(7) 0.172<br>C(44) 1.0615(3) 0.1048(5) 0.2951(7) 0.172<br>C(44) 1.0615(3) 0.1088(5) 0.2966(5) 0.128<br>C(45) 1.0808(4) 0.0602(6) 0.3815(7) 0.180<br>C(44) 1.0517(2) 0.2744(4) 0.4811(5) 0.110<br>C(47) 0.9012(2) 0.3265(3) 0.4002(3) 0.071<br>C(48) 0.9065(2) 0.2385(3) 0.6000(3) 0.078<br>B(1) 0.4344(2) 0.1376(2) 0.1093(3) 0.388<br>B(2) 0.9382(2) 0.1028(4) 0.3329(5) 0.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(14) | 0.3252(1) | 0.0915(2)  | 0.0911(3)  | 0.039 |
| C(16) 0.2546(2) 0.1097(3) $-0.0663(3)$ 0.060<br>C(17) 0.2078(2) 0.0675(3) $-0.0046(4)$ 0.065<br>C(18) 0.2192(2) 0.0692(3) 0.1048(4) 0.062<br>C(19) 0.2771(1) 0.0716(2) 0.1542(3) 0.044<br>C(20) 0.4916(1) 0.1020(2) 0.1769(2) 0.040<br>C(21) 0.4818(1) 0.0361(2) 0.2504(3) 0.044<br>C(22) 0.4496(2) 0.2215(2) 0.0265(3) 0.055<br>C(23) 0.4649(2) 0.2009(3) $-0.0791(3)$ 0.072<br>C(24) 0.5525(1) 0.1407(3) 0.1599(3) 0.054<br>C(25) 0.5878(2) 0.0766(3) 0.0914(3) 0.072<br>C(24) 0.5525(1) 0.1407(3) 0.3308(3) 0.069<br>C(27) 0.3781(2) $-0.1103(2)$ 0.2208(3) 0.058<br>C(28) 0.3742(2) 0.0525(3) 0.3816(3) 0.059<br>C(32) 0.6698(2) 0.1712(3) 0.4718(3) 0.059<br>C(33) 0.7640(2) 0.1195(2) 0.5838(3) 0.059<br>C(33) 0.7640(2) 0.1195(2) 0.5838(3) 0.059<br>C(34) 0.8320(1) 0.1319(2) 0.3566(2) 0.041<br>C(35) 0.7356(2) 0.0184(3) 0.2599(2) 0.047<br>C(36) 0.7356(2) 0.0184(3) 0.3621(3) 0.059<br>C(33) 0.7640(2) 0.0184(3) 0.3621(3) 0.054<br>C(44) 1.0005(2) 0.1452(4) 0.3386(5) 0.106<br>C(41) 0.9997(2) 0.2203(3) 0.4307(4) 0.074<br>C(42) 0.9241(3) 0.0162(4) 0.2388(7) 0.126<br>C(43) 0.9466(4) $-0.0595(7)$ 0.2951(7) 0.172<br>C(44) 1.0615(3) 0.0182(4) 0.2368(7) 0.126<br>C(43) 0.9466(4) $-0.0595(7)$ 0.2951(7) 0.172<br>C(44) 1.0615(3) 0.1088(5) 0.2966(5) 0.128<br>C(45) 1.0808(4) 0.0602(6) 0.3815(7) 0.180<br>C(46) 1.0517(2) 0.2744(4) 0.4811(5) 0.110<br>C(47) 0.9012(2) 0.3265(3) 0.4002(3) 0.078<br>B(1) 0.4344(2) 0.1376(2) 0.1093(3) 0.388<br>B(2) 0.9382(2) 0.1028(4) 0.3329(5) 0.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | c(15) | 0.3130(1) | 0.1124(2)  |            | 0 047 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | c(16) | 0.2546(2) | 0.1097(3)  | -0.0663(3) | 0 060 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C(17) | 0.2078(2) | 0.0875(3)  | -0.0046(4) | 0.065 |
| C(19) 0.2771(1) 0.0716(2) 0.1542(3) 0.048<br>C(20) 0.4916(1) 0.1020(2) 0.1769(2) 0.040<br>C(21) 0.4818(1) 0.0361(2) 0.2504(3) 0.044<br>C(22) 0.4357(2) 0.2215(2) 0.0265(3) 0.055<br>C(23) 0.4649(2) 0.2009(3) $-0.0791(3) 0.072$<br>C(24) 0.5525(1) 0.1407(3) 0.1599(3) 0.054<br>C(25) 0.5878(2) 0.0766(3) 0.0914(3) 0.072<br>C(26) 0.5274(2) $-0.070(3) 0.3308(3) 0.069$<br>C(27) 0.3781(2) $-0.1103(2) 0.2208(3) 0.058$<br>C(31) 0.7563(2) 0.2807(3) 0.4854(3) 0.059<br>C(33) 0.7640(2) 0.1195(2) 0.53818(3) 0.059<br>C(33) 0.7640(2) 0.1195(2) 0.53818(3) 0.059<br>C(33) 0.7640(2) 0.1195(2) 0.5356(2) 0.041<br>C(35) 0.738(1) 0.1919(2) 0.2556(2) 0.041<br>C(35) 0.736(2) 0.1646(3) 0.2644(3) 0.059<br>C(33) 0.7516(2) 0.1646(3) 0.2644(3) 0.059<br>C(33) 0.7516(2) 0.0164(3) 0.2644(3) 0.059<br>C(34) 0.8091(2) 0.0469(2) 0.3396(3) 0.048<br>C(40) 1.0005(2) 0.1452(4) 0.3660(5) 0.106<br>C(41) 0.9997(2) 0.2203(3) 0.4307(4) 0.074<br>C(42) 0.9241(3) 0.0162(4) 0.2388(7) 0.126<br>C(44) 1.0615(3) 0.1088(5) 0.2951(7) 0.172<br>C(44) 1.0615(2) 0.2734(4) 0.4811(5) 0.110<br>C(47) 0.9012(2) 0.3265(3) 0.4002(3) 0.071<br>C(48) 0.9065(2) 0.2385(3) 0.6000(3) 0.078<br>B(1) 0.4344(2) 0.1376(2) 0.1093(3) 0.338<br>B(2) 0.9382(2) 0.1028(4) 0.3329(5) 0.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C(18) | 0.2192(2) | 0.0692(3)  | 0.1048(4)  | 0.062 |
| C(20) 0.4916(1) 0.1020(2) 0.1769(2) 0.040<br>C(21) 0.4818(1) 0.0361(2) 0.2504(3) 0.044<br>C(22) 0.4357(2) 0.2215(2) 0.0265(3) 0.055<br>C(23) 0.4649(2) 0.2009(3) $-0.0791(3)$ 0.072<br>C(24) 0.5525(1) 0.1407(3) 0.1599(3) 0.054<br>C(25) 0.5878(2) 0.0766(3) 0.0914(3) 0.072<br>C(26) 0.5274(2) $-0.0070(3)$ 0.3308(3) 0.069<br>C(27) 0.3781(2) $-0.1103(2)$ 0.2208(3) 0.058<br>C(28) 0.3742(2) 0.0525(3) 0.3816(3) 0.058<br>C(31) 0.7563(2) 0.2807(3) 0.4854(3) 0.059<br>C(32) 0.6698(2) 0.1712(3) 0.4718(3) 0.059<br>C(33) 0.7640(2) 0.1195(2) 0.5838(3) 0.0650<br>C(34) 0.8320(1) 0.1319(2) 0.3566(2) 0.047<br>C(36) 0.7356(2) 0.1646(3) 0.2644(3) 0.059<br>C(37) 0.7151(2) 0.0781(3) 0.2959(2) 0.047<br>C(36) 0.7356(2) 0.184(3) 0.3621(3) 0.054<br>C(40) 1.0005(2) 0.1452(4) 0.3380(5) 0.106<br>C(41) 0.9997(2) 0.2203(3) 0.4307(4) 0.074<br>C(42) 0.9241(3) 0.0162(4) 0.2388(7) 0.126<br>C(43) 0.9466(4) $-0.0595(7)$ 0.2951(7) 0.172<br>C(44) 1.0615(3) 0.1088(5) 0.2966(5) 0.128<br>C(45) 1.0808(4) 0.0602(6) 0.3815(7) 0.180<br>C(46) 1.0517(2) 0.2744(4) 0.4811(5) 0.110<br>C(47) 0.9012(2) 0.2285(3) 0.6000(3) 0.078<br>B(1) 0.4344(2) 0.1376(2) 0.1093(3) 0.387<br>B(2) 0.9382(2) 0.1028(4) 0.3329(5) 0.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(19) | 0.2771(1) | 0.0716(2)  | 0.1542(3)  | 0.048 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(20) | 0.4916(1) | 0.1020(2)  | 0.1769(2)  | 0.040 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(21) | 0.4818(1) | 0.0361(2)  | 0.2504(3)  | 0.044 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(22) | 0.4357(2) | 0.2215(2)  | 0.0265(3)  | 0.055 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(23) | 0.4649(2) | 0.2009(3)  | -0.0791(3) | 0.072 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(24) | 0.5525(1) | 0.1407(3)  | 0.1599(3)  | 0.054 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(25) | 0.5878(2) | 0.0766(3)  | 0.0914(3)  | 0.072 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(26) | 0.5274(2) | -0.0070(3) | 0.3308(3)  | 0.069 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(27) | 0.3781(2) | -0.1103(2) | 0.2208(3)  | 0.058 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(28) | 0.3742(2) | 0.0525(3)  | 0.3816(3)  | 0.058 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(31) | 0.7563(2) | 0.2807(3)  | 0.4854(3)  | 0.059 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(32) | 0.6698(2) | 0.1712(3)  | 0.4718(3)  | 0.059 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(33) | 0.7640(2) | 0.1195(2)  | 0.5838(3)  | 0.050 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(34) | 0.8320(1) | 0.1319(2)  | 0.3566(2)  | 0.041 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(35) | 0.7938(1) | 0.1919(2)  | 0.2959(2)  | 0.047 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(36) | 0.7356(2) | 0.1646(3)  | 0.2644(3)  | 0.056 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(37) | 0.7151(2) | 0.0781(3)  | 0.2971(3)  | 0.059 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(38) | 0.7516(2) | 0.0184(3)  | 0.3621(3)  | 0.054 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(39) | 0.8091(2) | 0.0469(2)  | 0.3936(3)  | 0.048 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(40) | 1.0005(2) | 0.1452(4)  | 0.3680(5)  | 0.106 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(41) | 0.9997(2) | 0.2203(3)  | 0.4307(4)  | 0.074 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(42) | 0.9241(3) | 0.0162(4)  | 0.2388(7)  | 0.126 |
| C(44) 1.0615(3) 0.1088(5) 0.2966(5) 0.128   C(45) 1.0808(4) 0.0602(6) 0.3815(7) 0.180   C(46) 1.0517(2) 0.2744(4) 0.4811(5) 0.110   C(47) 0.9012(2) 0.3669(3) 0.4002(3) 0.071   C(48) 0.9065(2) 0.2385(3) 0.6000(3) 0.078   B(1) 0.4344(2) 0.1376(2) 0.1093(3) 0.038   B(2) 0.9382(2) 0.1028(4) 0.3329(5) 0.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C(43) | 0.9466(4) | -0.0595(7) | 0.2951(7)  | 0.172 |
| C(45) 1.0808(4) 0.0602(6) 0.3815(7) 0.180   C(46) 1.0517(2) 0.2744(4) 0.4811(5) 0.110   C(47) 0.9012(2) 0.3669(3) 0.4002(3) 0.071   C(48) 0.9065(2) 0.2385(3) 0.6000(3) 0.078   B(1) 0.4344(2) 0.1376(2) 0.1093(3) 0.038   B(2) 0.9382(2) 0.1028(4) 0.3329(5) 0.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C(44) | 1.0615(3) | 0.1088(5)  | 0.2966(5)  | 0.128 |
| C(46) 1.0517(2) 0.2744(4) 0.4811(5) 0.110   C(47) 0.9012(2) 0.3669(3) 0.4002(3) 0.071   C(48) 0.9065(2) 0.2385(3) 0.6000(3) 0.078   B(1) 0.4344(2) 0.1376(2) 0.1093(3) 0.038   B(2) 0.9382(2) 0.1028(4) 0.3329(5) 0.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(45) | 1.0808(4) | 0.0602(6)  | 0.3815(7)  | 0.180 |
| C(47)   0.9012(2)   0.3669(3)   0.4002(3)   0.071     C(48)   0.9065(2)   0.2385(3)   0.6000(3)   0.078     B(1)   0.4344(2)   0.1376(2)   0.1093(3)   0.038     B(2)   0.9382(2)   0.1028(4)   0.3329(5)   0.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(46) | 1.0517(2) | 0.2744(4)  | 0.4811(5)  | 0.110 |
| C(48)   0.9065(2)   0.2385(3)   0.6000(3)   0.078     B(1)   0.4344(2)   0.1376(2)   0.1093(3)   0.038     B(2)   0.9382(2)   0.1028(4)   0.3329(5)   0.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(47) | 0.9012(2) | 0.3669(3)  | 0.4002(3)  | 0.071 |
| B(1) 0.4344(2) 0.1376(2) 0.1093(3) 0.038<br>B(2) 0.9382(2) 0.1028(4) 0.3329(5) 0.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C(48) | 0.9065(2) | 0.2385(3)  | 0.6000(3)  | 0.078 |
| B(2) = 0.9382(2) = 0.1028(4) = 0.3329(5) = 0.087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B(1)  | 0.4344(2) | 0.1376(2)  | 0.1093(3)  | 0.038 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8(2)  | 0.9382(2) | 0.1028(4)  | 0.3329(5)  | 0.087 |

Silicium-Atom stets vom  $C_5H_5Co$ -Fragment abgewandt ist (exo-Ph<sup>2</sup>).

Während in Abb. 2 nur das cycloS-Enantiomer abgebildet ist, enthält die Elementarzelle des festen  $C_5H_5Co-\eta^4$ -7**d** je zwei cycloR- und cycloS-enantiomere Moleküle, die in Lösung wegen ausschließlich exo-gebundener Phenylgruppe als cycloS/S- und cycloR/R-Form auftreten und sich daher NMR-spektroskopisch (z. B. <sup>13</sup>C, <sup>29</sup>Si)<sup>11</sup> nicht unterscheiden. Die Packung der Moleküle in der Elementarzelle von  $C_5H_5Co-\eta^4$ -**5a**- $\eta^6$ -Cr(CO)<sub>3</sub> (Abb. 8) ist analog: Es treten je zwei cycloR- und cycloS-Enantiomere auf, die sich mit Hilfe geeigneter Maßnahmen trennen lassen sollten.

Aus der Abbildung der Moleküle in der Einheitszelle von  $C_2H_4(Cl)Ir-\eta^4$ -4a (Abb. 9) ist zu entnehmen, daß die 4a-Ringe an das Iridium-Atom ebenfalls cycloS- und cycloRenantiomer gebunden sind.

meso- $(C_2H_4Rh-\eta^1\eta^4-3a)_2$  mit  $C_i$ -Symmetrie enthält zwei (cycloR, cycloS) Moleküle jeweils im Symmetriezentrum der Zelle (vgl. Abb. 10).

Bei meso-(Ni- $\eta^3\eta^4$ -4bb')<sub>2</sub> sind in der Zelle vier Moleküle angeordnet (vgl. Abb. 11).

#### **Ergebnis und Ausblick**

Aus den Strukturuntersuchungen folgt, daß die Verbindungen  $C_3H_5Co-\eta^4$ -**5a**- $\eta^6$ -Cr(CO)<sub>3</sub> und  $C_2H_4(Cl)Ir-\eta^4$ -**4a** sowie auch  $C_5H_5Co-\eta^4$ -**7d**(*exo*-Ph<sup>2</sup>) im Kristall jeweils als cycloenantiomere Einzelmoleküle vorliegen. Da das Übergangsmetall stabil am NSiC<sub>2</sub>B-Ring  $\eta^4$ -komplexiert ist und die Isomeren mit *cycloR*- und *cycloS*-Konfiguration in Lösung nicht ohne weiteres racemisieren, sollte eine präparative Isolierung der für stöchiometrische und/oder katalytische Reaktionen interessanten *cycloR*- und *cycloS*-Enantiomeren mit Hilfe geeigneter Maßnahmen (vgl. Lit.<sup>17</sup>) möglich sein. Auch cycloenantioselektive Synthesen der *cycloR*- und *cycloS*-Enantiomeren könnten zum Ziel führen. Cycloenantiomere (Ligand)Übergangsmetall- $\pi$ -Komplexe wie die der

Tab. 6. Atomkoordinaten (mit Standardabweichungen in Klammern) und thermische Parameter von  $C_5H_5Co-\eta^4-7d(exo-Ph^2)$  (vgl. Abb. 2,  $U_{eq}$  siehe Tab. 5)

| Atom  | x          | У          | Z         | Ueq    |
|-------|------------|------------|-----------|--------|
| Co    | -0.0570(1) | -0.1032(1) | 0.2320(1) | 0.055  |
| Si    | -0.0633(2) | 0.0319(1)  | 0.3369(1) | 0.048  |
| N     | 0.0259(4)  | -0.0672(2) | 0.3544(3) | 0.050  |
| C(1)  | 0.1294(6)  | -0.0251(3) | 0.2113(3) | 0.057  |
| C(2)  | -0.0133(5) | 0.0233(3)  | 0.2168(3) | 0.052  |
| C(3)  | 0.2333(8)  | -0.0259(4) | 0.1280(4) | 0.084  |
| C(4)  | 0.3577(8)  | 0.0432(4)  | 0.1323(5) | 0.107  |
| C (5) | -0.0828(8) | 0.0759(4)  | 0.1414(4) | 0.084  |
| C (6) | -0.2793(6) | 0.0402(3)  | 0.3645(4) | 0.074  |
| C(7)  | 0.0507(3)  | 0.1141(2)  | 0.4043(2) | 0.053  |
| C(8)  | -0.0200    | 0.1912     | 0.4242    | 0.073* |
| C(9)  | 0.0658     | 0.2519     | 0.4727    | 0.091* |
| C(10) | 0.2223     | 0.2355     | 0.5013    | 0.086* |
| C(11) | 0.2930     | 0.1585     | 0.4814    | 0.085* |
| C(12) | 0.2072     | 0.0977     | 0.4328    | 0.069* |
| C(13) | 0.3135(7)  | -0.1359(4) | 0.3174(5) | 0.090  |
| C(14) | 0.2928(9)  | -0.2084(5) | 0.3766(7) | 0.166  |
| C(15) | -0.0446(5) | -0.2164(3) | 0.1642(4) | 0.107  |
| C(16) | -0.1267    | -0.1546    | 0.1119    | 0.122* |
| C(17) | -0.2622    | -0.1284    | 0.1606    | 0.121* |
| C(18) | -0.2638    | -0.1740    | 0.2429    | 0.096* |
| C(19) | -0.1293    | -0.2284    | 0.2451    | 0.099* |
| B     | 0.1636(7)  | -0.0793(3) | 0.2942(4) | 0.057  |

Tab. 7. Atomkoordinaten (mit Standardabweichungen in Klammern) und thermische Parameter von  $C_5H_5Co-\eta^4$ - $5a-\eta^6$ - $Cr(CO)_3$  (vgl. Abb. 3,  $U_{eq}$  siche Tab. 5)

| Atom   | x          | У         | Z         | Ueq   |
|--------|------------|-----------|-----------|-------|
| Co     | 0.3001(1)  | 0.4303(1) | 0.1409(1) | 0.046 |
| Cr     | 0.0386(1)  | 0.4355(1) | 0.3339(1) | 0.050 |
| Si     | 0.2650(1)  | 0.5970(1) | 0.2149(1) | 0.050 |
| 0(1)   | -0.0530(4) | 0.6348(3) | 0.3286(4) | 0.112 |
| 0(2)   | -0.1824(4) | 0.3685(3) | 0.3740(3) | 0.105 |
| 0(3)   | -0.0905(4) | 0.4125(4) | 0.1463(3) | 0.106 |
| N      | 0.2861(3)  | 0.4792(2) | 0.2606(2) | 0.041 |
| C(1)   | -0.0181(5) | 0.5576(4) | 0.3306(4) | 0.076 |
| C(2)   | -0.0964(5) | 0.3949(4) | 0.3583(4) | 0.066 |
| C(3)   | -0.0382(5) | 0.4210(4) | 0.2189(4) | 0.068 |
| C(4)   | 0.2276(3)  | 0.4392(3) | 0.3212(3) | 0.043 |
| C(5)   | 0.2174(4)  | 0.4936(4) | 0.3940(3) | 0.056 |
| C(6)   | 0.1713(5)  | 0.4521(5) | 0.4604(3) | 0.070 |
| C(7)   | 0.1324(5)  | 0.3587(5) | 0.4529(4) | 0.074 |
| C(8)   | 0.1420(4)  | 0.3038(4) | 0.3801(4) | 0.069 |
| C(9)   | 0.1851(4)  | 0.3450(3) | 0.3144(3) | 0.052 |
| C(10)  | 0.4520(4)  | 0.5016(3) | 0.1950(3) | 0.049 |
| C(11)  | 0.3678(4)  | 0.5672(3) | 0.1482(3) | 0.053 |
| C(12)  | 0.3172(6)  | 0.6915(4) | 0.2997(4) | 0.087 |
| C(13)  | 0.1138(5)  | 0.6216(4) | 0.1544(4) | 0.084 |
| C(14)  | 0.5678(5)  | 0.4854(4) | 0.1733(4) | 0.069 |
| C(15)  | 0.6588(5)  | 0.5598(5) | 0.2158(4) | 0.094 |
| C(16)  | 0.3788(5)  | 0.6240(4) | 0.0685(4) | 0.078 |
| C(17)  | 0.4784(4)  | 0.3692(4) | 0.3329(3) | 0.057 |
| C(18)  | 0.5342(5)  | 0.4099(5) | 0.4211(4) | 0.096 |
| Cp(1)  | 0.1789(8)  | 0.4066(5) | 0.0238(5) | 0.096 |
| Cp(2)  | 0.1613(5)  | 0.3415(5) | 0.0841(5) | 0.078 |
| Cp (3) | 0.2638(8)  | 0.2875(4) | 0.1091(4) | 0.087 |
| Cp(4)  | 0.3445(6)  | 0.3201(7) | 0.0694(6) | 0.105 |
| Cp (5) | 0.294(1)   | 0.3960(6) | 0.0152(5) | 0.109 |
| В      | 0.4117(5)  | 0.4466(4) | 0.2653(4) | 0.047 |

Tab. 8. Atomkoordinaten (mit Standardabweichungen in Klammern) und thermische Parameter der Rotamere A und B von  $C_2H_4(Cl)Ir$ - $\eta^4$ -4a (vgl. Abb. 4,  $U_{eq}$  siehe Tab. 5)

| Atom  | x          | У          | z         | <sup>U</sup> eq |
|-------|------------|------------|-----------|-----------------|
| Ir(1) | 0.3033(1)  | 0.1350(1)  | 0.2927(1) | 0.035           |
| Ir(2) | 0.8029(1)  | 0.7886(1)  | 0.2207(1) | 0.037           |
| CL(1) | 0.3252(1)  | 0.3584(2)  | 0.2062(1) | 0.065           |
| CL(2) | 0.8589(1)  | 1.0081(2)  | 0.1558(1) | 0.072           |
| Si(1) | 0.1965(1)  | -0.1322(2) | 0.1933(1) | 0.038           |
| Si(2) | 0.7277(1)  | 0.5220(2)  | 0.1059(1) | 0.041           |
| N(1)  | 0.1564(3)  | 0.0751(5)  | 0.2053(3) | 0.041           |
| N(2)  | 0.6790(3)  | 0.7292(5)  | 0.0996(3) | 0.041           |
| cii   | 0.2365(3)  | -0.0256(6) | 0.3652(3) | 0.038           |
| cizi  | 0.2796(3)  | -0.1262(6) | 0.3163(3) | 0.036           |
| cisi  | 0.2645(4)  | -0.0378(7) | 0.4699(4) | 0.051           |
| C(4)  | 0.2067(6)  | -0.1699(9) | 0.4960(5) | 0.079           |
| C(5)  | 0.3609(4)  | -0.2539(7) | 0.3628(4) | 0.055           |
| C(6)  | 0.2598(5)  | -0.1410(8) | 0.1112(4) | 0.064           |
| c(7)  | 0.0944(4)  | -0.2808(8) | 0.1596(5) | 0.062           |
| C(8)  | 0.0893(4)  | 0.2231(8)  | 0.3258(5) | 0.065           |
| C(9)  | 0.1351(6)  | 0.3781(9)  | 0.3685(6) | 0.096           |
| C(10) | 0.0953(4)  | 0.1762(8)  | 0.1237(4) | 0.065           |
| C(11) | 0.4548(4)  | 0.1307(9)  | 0.3789(4) | 0.061           |
| C(12) | 0.4060(4)  | 0.2390(8)  | 0.4157(4) | 0.061           |
| C(21) | 0.7000(3)  | 0.6341(6)  | 0.2546(3) | 0.038           |
| C(22) | 0.7658(3)  | 0.5290(6)  | 0.2334(4) | 0.040           |
| C(23) | 0.6851(4)  | 0.6269(7)  | 0.3461(4) | 0.054           |
| C(24) | 0.6067(5)  | 0.5040(9)  | 0.3442(5) | 0.080           |
| C(25) | 0.8330(4)  | 0.4021(8)  | 0.2992(5) | 0.062           |
| C(26) | 0.8293(5)  | 0.5099(8)  | 0.0618(5) | 0.063           |
| C(27) | 0.6289(4)  | 0.3767(8)  | 0.0429(5) | 0.063           |
| C(28) | 0.5550(4)  | 0.8779(8)  | 0.1669(5) | 0.065           |
| C(29) | 0.5893(6)  | 1.041(1)   | 0.2119(6) | 0.096           |
| C(30) | 0.6439(5)  | 0.8289(8)  | 0.0124(4) | 0.064           |
| cisii | 0.9353 (5) | 0.7819(9)  | 0.3372(5) | 0.076           |
| c(32) | 0.8713(4)  | 0.8851(8)  | 0.3542(4) | 0.059           |
| B(1)  | 0.1543(4)  | 0.0936(7)  | 0.2991(4) | 0.042           |
| B(2)  | 0.6390(4)  | 0.7485(7)  | 0.1737(5) | 0.043           |

organosubstituierten 2,5-Dihydro-1,2,5-azasilaborole böten neue präparative Möglichkeiten in der organischen Synthese.

#### **Experimenteller** Teil

Als Lösungsmittel verwendete man Pentan, Heptan und Diethylether, die vor Gebrauch luft- und wasserfrei gemacht und unter

Tab. 9. Atomkoordinaten (mit Standardabweichungen in Klammern) und thermische Parameter von  $(C_2H_4Rh-\eta^1\eta^4-3a)_2$  (vgl. Abb. 5,  $U_{eq}$  siehe Tab. 5)

| Atom  | x          | У          | z          | <sup>U</sup> eq |
|-------|------------|------------|------------|-----------------|
| Rh    | 0.1469(1)  | 0.0021(1)  | 0.0004(1)  | 0.034           |
| Si    | 0.0423(1)  | 0.2248(1)  | -0.0732(1) | 0.044           |
| N     | -0.0306(3) | 0.0816(3)  | -0.0896(3) | 0.037           |
| C(1)  | 0.1661(4)  | 0.0625(4)  | -0.1570(3) | 0.042           |
| C(2)  | 0.2012(4)  | 0.1604(4)  | -0.0860(3) | 0.043           |
| C(3)  | 0.2585(5)  | 0.0084(4)  | -0.2183(4) | 0.059           |
| C(4)  | 0.2526(6)  | 0.0801(6)  | -0.3202(5) | 0.091           |
| C(5)  | 0.3315(5)  | 0.2202(5)  | -0.0549(4) | 0.060           |
| C(6)  | 0.0457(6)  | 0.3063(4)  | 0.0523(5)  | 0.072           |
| C(7)  | -0.0354(5) | 0.3242(5)  | -0.1888(5) | 0.074           |
| C(8)  | -0.0560(5) | -0.0753(4) | -0.2546(4) | 0.057           |
| C(9)  | -0.1211(7) | -0.0181(6) | -0.3609(5) | 0.104           |
| C(10) | 0.3394(7)  | -0.0405(8) | 0.0857(9)  | 0.139           |
| C(11) | 0.2939(7)  | -0.1277(8) | 0.050(1)   | 0.156           |
| B     | 0.0227(5)  | 0.0183(4)  | -0.1700(4) | 0.041           |

Tab. 10. Atomkoordinaten (mit Standardabweichungen in Klammern) und thermische Parameter von  $(Ni-\eta^3\eta^4-4bb')_2$  (vgl. Abb. 6,  $U_{eq}$  siehe Tab. 5)

| Atom  | x         | У          | z         | Ueq   |
|-------|-----------|------------|-----------|-------|
| Ni(1) | 0.9497(1) | 0.1922(1)  | 0.2214(1) | 0.032 |
| Ni(2) | 1.0980(1) | 0.1879(1)  | 0.2075(1) | 0.039 |
| Si(1) | 1.0692(1) | 0.0229(1)  | 0.3307(1) | 0.038 |
| Si(2) | 0.9330(1) | 0.3579(1)  | 0.1012(1) | 0.041 |
| N(1)  | 0.9574(2) | 0.0463(3)  | 0.3020(1) | 0.039 |
| N(2)  | 0.8654(2) | 0.3396(3)  | 0.1469(2) | 0.040 |
| C(1)  | 1.0129(2) | 0.3005(4)  | 0.3148(2) | 0.037 |
| C(2)  | 1.0848(2) | 0.2200(4)  | 0.3086(2) | 0.037 |
| C(3)  | 1.1621(2) | 0.2753(4)  | 0.3025(2) | 0.046 |
| C(4)  | 1.2140(3) | 0.1772(5)  | 0.2839(2) | 0.054 |
| C(5)  | 1.1883(3) | 0.4387(5)  | 0.3107(3) | 0.070 |
| C(6)  | 1.0947(3) | -0.1383(5) | 0.2868(2) | 0.058 |
| C(7)  | 1.1173(3) | -0.0136(5) | 0.4252(2) | 0.069 |
| C(8)  | 1.0084(3) | 0.4666(4)  | 0.3241(2) | 0.048 |
| C(9)  | 1.0557(3) | 0.5155(5)  | 0.3995(2) | 0.065 |
| C(10) | 0.8637(3) | 0.2465(5)  | 0.3384(2) | 0.058 |
| C(11) | 0.8820(3) | 0.2224(7)  | 0.4146(3) | 0.083 |
| C(12) | 0.8991(3) | -0.0789(5) | 0.2982(2) | 0.057 |
| C(21) | 0.8987(2) | 0.0842(4)  | 0.1269(2) | 0.038 |
| C(22) | 0.9714(2) | 0.1612(4)  | 0.1196(2) | 0.038 |
| C(23) | 1.0455(3) | 0.1031(4)  | 0.1103(2) | 0.044 |
| C(24) | 1.1141(3) | 0.1980(5)  | 0.1202(2) | 0.052 |
| C(25) | 1.0585(3) | -0.0594(5) | 0.0960(2) | 0.056 |
| C(26) | 1.0042(3) | 0.5220(4)  | 0.1330(2) | 0.063 |
| C(27) | 0.8710(3) | 0.3868(6)  | 0.0072(2) | 0.074 |
| C(28) | 0.8812(3) | -0.0826(4) | 0.1183(2) | 0.048 |
| C(29) | 0.8341(3) | -0.1261(5) | 0.0424(2) | 0.072 |
| C(30) | 0.7412(3) | 0.1442(5)  | 0.1379(2) | 0.056 |
| C(31) | 0.6659(3) | 0.1808(8)  | 0.0711(3) | 0.096 |
| C(32) | 0.8199(3) | 0.4678(5)  | 0.1605(2) | 0.058 |
| B(1)  | 0.9413(3) | 0.1993(5)  | 0.3180(2) | 0.039 |
| B(2)  | 0.8314(3) | 0.1880(5)  | 0.1372(2) | 0.040 |

Argon als Schutzgas aufbewahrt wurden. Die Handhabung der Kristalle erfolgte bei striktem Ausschluß von Luftsauerstoff und Feuchtigkeit unter Argon als Schutzgas.

Die Kristalle der nach Literaturangaben hergestellten Komplexverbindungen wurden beim Abkühlen auf die angegebenen Temperaturen aus bestimmten Lösungsmitteln gewonnen:  $(OC)_3Cr-\eta^6$ -**5a** (Schmp. 92°C)<sup>11)</sup> auf -50°C, C<sub>5</sub>H<sub>3</sub>Co- $\eta^4$ -**7d** (Schmp. 112°C)<sup>11)</sup> auf -78°C und (Ni- $\eta^3\eta^4$ -**4bb**')<sub>2</sub> [Schmp. 134°C (Zers.)]<sup>1,4)</sup> auf -78°C jeweils aus Pentan, C<sub>5</sub>H<sub>3</sub>Co- $\eta^4$ -**5a**- $\eta^6$ -Cr(CO)<sub>3</sub> (Schmp. 122°C)<sup>11)</sup> aus heißem Heptan, C<sub>2</sub>H<sub>4</sub>(Cl)Ir- $\eta^4$ -**4a** (Schmp. 112°C)<sup>11)</sup> und (C<sub>2</sub>H<sub>4</sub>Rh- $\eta^1\eta^4$ -**3a**)<sub>2</sub> (Schmp. 158°C)<sup>11)</sup> auf 0 bis -78°C jeweils aus Diethylether mit einer Abkühlungsgeschwindigkeit von ca. 0.3°C/h.

Experimentelle Einzelheiten der Kristallstrukturanalysen sind Tab. 4 zu entnehmen<sup>18)</sup>.

Atomkoordinaten und thermische Parameter von  $(OC)_3Cr-\eta^6$ -**5a** sowie den fünf (Ligand)Übergangsmetall- $\eta^4$ -NSiC<sub>2</sub>B-Komplexen sind in Tab. 5–10 zusammengestellt.

#### CAS-Registry-Nummern

 $\begin{array}{l} meso-(C_2H_4Rh-\eta^1\eta^4\textbf{-3a})_2:\ 122212\text{-}77\text{-}5\ /\ cycloR\text{-}C_2H_4(Cl)Ir-\eta^4\textbf{-4a}:\ 122292\text{-}19\text{-}7\ /\ cycloS\text{-}C_2H_4(Cl)Ir-\eta^4\textbf{-4a}:\ 122212\text{-}76\text{-}4\ /\ meso-(Ni-\eta^3,\eta^4\textbf{-4bb'})_2:\ 122235\text{-}63\text{-}6\ /\ (OC)_3Cr-\eta^6\textbf{-5a}:\ 122212\text{-}74\text{-}2\ /\ cycloR-C_5H_5Co-\eta^4\textbf{-5a}-\eta^6\text{-}Cr(CO)_3:\ 122230\text{-}48\text{-}7\ /\ cycloS\text{-}C_5H_5Co-\eta^4\textbf{-5a}-\eta^6\text{-}Cr(CO)_3:\ 122212\text{-}75\text{-}3\ /\ cycloR-C_5H_5Co-\eta^4\textbf{-7d}:\ 122330\text{-}50\text{-}1\ /\ cycloS\text{-}C_5H_5Co-\eta^4\textbf{-7d}:\ 122235\text{-}62\text{-}5\end{array}$ 

- <sup>1)</sup> 91. Mitteilung über Borverbindungen: 90. Mitteilung: R. Köster, G. Seidel, B. Wrackmeyer, *Chem. Ber.* **122** (1989) 2055, voran-
- stehend. <sup>2) 2a)</sup> Jetzige Anschrift: Anorganisch-Chemisches Institut der Tech-nischen Universität München, D-8046 Garching. <sup>2b)</sup> Ständige Anschrift: Universität Xiamen, Xiamen, Fujian, VR China
- <sup>3)</sup> R. Köster, G. Seidel, S. Amirkhalili, R. Boese, G. Schmid, Chem. Ber. 115 (1982) 738.
- <sup>4)</sup> R. Köster, G. Śeidel, Angew. Chem. 94 (1982) 225; Angew. Chem. Int. Ed. Engl. 21 (1982) 207.
- <sup>5)</sup> R. Köster, G. Seidel, R. Boese, B. Wrackmeyer, Chem. Ber. 121 (1988) 709.
- <sup>6)</sup> R. Köster, G. Seidel, R. Boese, B. Wrackmeyer, Chem. Ber. 121 (1988) 1955
- <sup>7)</sup> R. Köster, G. Seidel, R. Boese, B. Wrackmeyer, Chem. Ber. 121 (1988) 1941.
- <sup>8)</sup> G. Schmid, R. Köster, Organobor-Übergangsmetall-π-Komplexe, in Methoden der Organischen Chemie (Houben-Weyl-Müller), 4. Aufl., Bd. XIII/3c (R. Köster, Ed.), S. 80, 83, Thieme, Stuttgart 1984.

- <sup>9)</sup> B. Wrackmeyer, R. Köster, Analytik der Organobor-Verbindungen, in Methoden der Organischen Chemie (Houben-Weyl-Müller), 4. Aufl., Bd. XIII/3c (R. Köster, Ed.), S. 593, Thieme, Stutt-
- gart 1984. <sup>10</sup> R. Köster, G. Seidel, R. Boese B. Wrackmeyer. *Chem. Ber.* **120** (1987) 669.
- <sup>11)</sup> R. Köster, G. Seidel, R. Boese, B. Wrackmeyer, Chem. Ber. 122
- (1989) 1825. <sup>12) 12a)</sup> V. Prelog, H. Gerlach, *Helv. Chim. Acta* **47** (1964) 2288. <sup>12b</sup> H. Gerlach, J. A. Owtschinnikow, V. Prelog, *Helv. Chim.* Acta. 47 (1964) 2294.
- <sup>13)</sup> O.-A. Neumüller, *Römpps Chemie-Lexikon*, 8. Aufl., Bd. 2, S. 841, Franckh, Stuttgart 1981.
- <sup>14)</sup> C. Krüger, A. Jiang, Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, unveröffentlichte Ergebnisse. <sup>15</sup> R. Köster, G. Seidel, S. Kerschl, B. Wrackmeyer, Z. Naturforsch.,
- *Teil B*, **42** (1987) 191. <sup>16</sup> R. A. Jones, T. C. Wright, J. L. Atwood, W. E. Hunter, *Organometallics* **2** (1983) 470.
- <sup>17)</sup> G. Schmid, T. Rohling, J. Organomet. Chem., im Druck; vgl. T. Rohling, Untersuchungen und Reaktionen an 1,2-Azaborolyl-Eisen-Komplexen zur enantiomerenselektiven Synthese, Dissertation, Universität Essen GHS 1989
- <sup>18)</sup> Weitere Einzelheiten zu den Kristallstrukturanalysen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-53772, der Autorennamen und des Zeitschriftenzitats angefordert werden.

F131/897

2083